期刊文献+

基于组合牛顿迭代法的改进IEKF及其在UNGM中的应用 被引量:5

Modified iterated extended Kalman filter based on Gauss-Newton iteration and its application in UNGM
在线阅读 下载PDF
导出
摘要 从高斯-牛顿迭代的角度对迭代扩展卡尔曼滤波(IEKF)进行分析,提出了一种基于组合牛顿迭代法的改进IEKF算法。该算法通过实时判断每次迭代对状态的逼近程度,采用加权平均的方法确定新的迭代值,继而采用卡尔曼滤波框架对状态进行量测更新。新算法较传统的IEKF具有精度高以及对初值不敏感的优点。实例仿真验证了该算法的有效性。 By analyzing iterated extended Kalman filter(IEKF) in terms of Gauss-Newton iteration,a modified IEKF algorithm was obtained with the globally convergent hybrid Newton′s method.This algorithm was used to determine the new iterated value by means of weighted average as well as real-time judgment of each iteration approaching to the actual state.And then,the Kalman filtering framework was used for the new iterated value to update the state vector.Compared with the conventional IEKF,this algorithm is advantageous to accuracy and robustness.The simulation results prove that the algorithm is effective.
出处 《海军工程大学学报》 CAS 北大核心 2012年第1期15-19,共5页 Journal of Naval University of Engineering
基金 国家自然科学基金资助项目(40904018) 教育部重点实验室开放基金资助项目(201001)
关键词 非线性滤波 迭代扩展卡尔曼滤波 高斯-牛顿迭代 全局收敛 nonlinear filter IEKF Gauss-Newton iteration globally convergence
作者简介 常国宾(1984-),男,博士生,主要研究方向为惯性技术及应用、最优估计技术,E-mail:guobinchang1984@gmail.com。
  • 相关文献

参考文献11

  • 1KALMAN R. A new approach to linear filtering and prediction problems [J]. Journal of Basic Engineering, 1960,82(1):35--46.
  • 2BUCY R, RENE K. Digital synthesis of nonlinear filters [J]. Automatica, 1971,7 (3) : 287-- 289.
  • 3SUNHARA Y. An approximate method of state estimation for nonlinear dynamical systems [C]// Joint Automa- tic Control Conf. Boulder: Univ. of Colorado, 1969.
  • 4SIMON D. Optimal state estimation.- Kalman, H∞ ,and nonlinear approaches [M]. New Jersey: John Wiley Sons, 2006.
  • 5GELB A E. Applied Optimal Estimation [M]. Boston: MIT Press, 1974.
  • 6JULIER S J, UHLMANN J K. A new extension of the Kalman filter to nonlinear systems [C]//Proc. SPIE-Int. Soc. Opt. Eng. Orlando: SPIE, 1997.
  • 7李厚全,李恒,唐劲松,苑秉成.Unscented粒子滤波算法在合成孔径声纳组合导航中的应用[J].海军工程大学学报,2010,22(3):26-31. 被引量:6
  • 8BELL F, CATHEY B. The iterated Kalman filter update as a Gauss-Newton method [J]. IEEE Trans. on Auto- matic Control, 1993,38(2) :294--297.
  • 9杨争斌,钟丹星,郭福成,周一宇.一种基于高斯牛顿迭代的单站无源定位算法[J].系统工程与电子技术,2007,29(12):2006-2009. 被引量:10
  • 10DENNIS J, SCHNABEL R. Numerical Methods for Unconstrained Optimization and Nonlinear Equations [M]. Englewood Cliffs, NJ.. Prentice-Hall, 1983.

二级参考文献17

  • 1郭福成,孙仲康.三维机动辐射源的单站无源跟踪方法[J].现代雷达,2005,27(3):5-8. 被引量:11
  • 2殷海庭,刘纪元,张春华.基于惯性测量系统的合成孔径声呐运动补偿[J].电子与信息学报,2007,29(1):63-66. 被引量:12
  • 3HANSEN R E,SAEBO T O,KENNETH G,et al.Signal processing for AUV based interferometric synthetic aperture sonar[C]// Oceans Proceedings.San Diego:Oceans,2003.
  • 4COOK A,CHRISTOFF T,FERNANDEZ E.Motion compensation of AUV-based synthetic aperture sonar[C]// Oceans Proceedings.San Diego:Oceans,2003.
  • 5YU M J,LEE J G,PARK H W.Comparison of SDINS in-flight alignment using equivalent error models[J].IEEE Trans.on Aerospace and Electronic Systems,1999,35 (3):1046-1054.
  • 6ARULAMPALAM M S,MASKELL S,GORDON N,et al.A tutorial on particle filters for nonline nonlinear/non-Gaussian Bayesian tracking[J].IEEE Trans.Signal Processing,2002,50(2):174-188.
  • 7DOUCET A,GODSILL S,ANDRIEU C.On sequential Monte Carlo methods for Bayesian filtering[J].Statistics and Computing,2000,10:197-208.
  • 8WAN E A,VAN DER MERWE R.The unscented Kalman filter for nonlinear estimation[C]// IEEE Symposium.Beaverton,USA:IEEE,2000.
  • 9JULIER S J,UHLMANN J K.Unscented filtering and nonlinear estimation[J].Proceedings of the IEEE,2004,92(3):401-422.
  • 10MERVE R,DOUCET A,FREITAS N,et al.The unscented particle filter[R].England:Cambridge University,2000.

共引文献14

同被引文献61

  • 1宗长富,胡丹,杨肖,潘钊,徐颖.基于扩展Kalman滤波的汽车行驶状态估计[J].吉林大学学报(工学版),2009,39(1):7-11. 被引量:45
  • 2柴霖,袁建平,罗建军,方群,岳晓奎.非线性估计理论的最新进展[J].宇航学报,2005,26(3):380-384. 被引量:36
  • 3张学峰,黄大吉,章本照,童元正.集合数据同化方法的发展与应用概述[J].海洋学研究,2007,25(1):88-94. 被引量:9
  • 4李良群,姬红兵,罗军辉.迭代扩展卡尔曼粒子滤波器[J].西安电子科技大学学报,2007,34(2):233-238. 被引量:60
  • 5Tine Lefebvre,Herman Bruyninckx,Joris De Schutter.Kalman filters for non-linear systems: a comparison of performance[J].International Journal of Control.2004(7)
  • 6Evensen G. The Ensemble Kalman Filter Theoretical Formu- lation and Practical Implementation [J]. Ocean Dynamics, 2003,53(4) :343-367.
  • 7Evensen G. Sampling Strategies and Square Root Analysis Schemes for the EnKF[J]. Ocean Dynamics, 2004, 54 (6) : 539-560.
  • 8H uang C L, Li X, Lu L,et a l. Experiments of One Dimension- al Soil Moisture Assimilation System based on Ensemble Kal- man Filter[J]. Remote Sensing of Environment, 2008, 112 (3) : 888-900.
  • 9Huang C L,Li X. Retrieving Soil Temperature Profile by As- similating MODIS LST Products with Ensemble Kalman Fil- ter[J]. Remote Sensing of Environment, 2008,112 (4), 1320- 1336.
  • 10Dimet F X L,Talagrand O. Variational Algorithms for Analy- sis and Assimilation of Meteorological Observations:Theoret- ical Aspects[J]. Tellus, 1986,38A(2) : 97-110.

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部