期刊文献+

一种基于概率滑动窗口的应用层DoS攻击防御模型 被引量:1

Probability-based sliding window model for defending against application layer DoS attack
在线阅读 下载PDF
导出
摘要 网络上种类繁多的服务面临着复杂且不安全的生存环境,多种因素威胁着服务的生存,应用层DoS攻击就是其中的重要因素之一。然而,当前防御应用层DoS攻击的方法存在着对合法用户请求的误判,需要额外的硬件设备支持和难以抵御某些低速率攻击等不足。为此,提出了一种全新的应用层DoS攻击防御模型——基于概率的滑动窗口模型PBSWM(probability-based sliding window model)。该模型位于应用层,利用滑动窗口机制控制客户端发送的请求速率和服务器端接收的负载总量,利用概率发送控制在源端阻滞攻击者发送引发较大负载的请求,利用概率接受控制防止来自少量客户的请求占用系统的大部分应用资源。实验结果表明,该模型能够达到降低攻击损害、保障服务生存的目的。 The varied kinds of services are facing a complicated and unsafe survival environment. The application layer DoS attack is one of the most serious factors that threaten the service survivability. In the research on defense against it, some defects have been found, such as false positive, the need to extra hardware devices, and shortage of defense against the low-rate attack. A novel probability-based sliding window model (PBSWM) was proposed to defend against the application layer DoS attack. PBSWM, deployed in the application layer, uses the sliding window to limit the client request rate and service load, probabilistic transmission control to prevent the high-workload request attack, and the admission control to mitigate occupation of much of the service queue by minority of users. Finally, the experiment results show that PBSWM can mitigate the attacks and improve service survivability.
出处 《解放军理工大学学报(自然科学版)》 EI 北大核心 2012年第1期34-40,共7页 Journal of PLA University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60903161 61003257 61070188 61003311) 国家973计划资助项目(2010CB328104) 教育部高等学校博士点学科专项科研基金资助项目(200802860031 20110092130002) 江苏省自然科学基金资助项目(BK2008030) 江苏省网络与信息安全重点实验室资助项目(BM2003201) 计算机网络和信息集成教育部重点实验室资助项目(93K-9)
关键词 基于概率的滑动窗口模型 应用层DoS攻击防御 服务可生存性 PBSWA the defense against the application layer DoS attack service survivability
作者简介 朱勇(1977-),男,博士生。讲师;研究方向:服务计算;E—mail:zhuyoug@sell.edu.cn.
  • 相关文献

参考文献12

  • 1RANJAN S, SWAMINATHAN R, UYSAL M, et al. DDoS-resilient scheduling to counter application layer attacks under imperfect detection [C]. Barcelona: Proc IEEE INFOCOM, 2006.
  • 2XIE Yi, YU Shun-zheng. Monitoring the application-layer DDoS attacks for popular websites [J]. IEEE/ACM Transactions on Networking, 2009, 17(1):15-25.
  • 3谢逸,余顺争.新网络环境下应用层DDoS攻击的剖析与防御[J].电信科学,2007,23(1):89-93. 被引量:15
  • 4KANDULA S, KATABI D, JACOB M, et al. Botz-4- Sale: Surviving organized DDoS attacks that mimic flash crowds[C]. Boston: USENIX Association Proceedings of the 2nd Symposium on Networked Systems Design & Implementation (NSDI'05), 2005.
  • 5MACIA-FERNANDEZ G, DIAZ-VERDEJO J E, GARCIA-TEODORO P. Evaluation of a low-rate DoS attaek against iterative servers [J]. Computer Networks, 2007, 51(4):1013-1030.
  • 6MACIA-FERNANDEZ G, DIAZ-VERDEJO J E, Garcia-Teodoro P. Evaluation of a low-rate DoS attack against application servers[J]. Computers & Securit, 2008,27 (7-8):335-354.
  • 7MICHAEL W, MYTHILI V, HARI B, et al. DDoS defense by offense[C]. Pisa, Italy: SIGCOMM'06, 2006.
  • 8SANJEEV K, SANTOSH S V, HARI B, et al. Adaptive Selective Verification [C]. Pisa: Proc IEEE INFOCOM, 2008.
  • 9XIE Yi, YU Shun-zheng. A large-scale hidden semimarkov model for anomaly detection on user browsing behaviors[J]. IEEE/ACM Transactions on Networking, 2009,17(1) :54-65.
  • 10KHATTAB S, GOBRIEL S, MELHEM R, et al. Live baiting for service-level DoS attackers[C]. Phoenix: Proc IEEE INFOCOM, 2008.

二级参考文献14

  • 1Ismail Ari,Bo Hong,Ethan L,et al.Modeling,analysis and simulation of flash crowds on the Internet.Technical Report UCSC-CRL-03-15.Storage Systems Research Center,Jack Baskin School of Engineering University of California,Santa Cruz,CA,Feb 2004
  • 2JungJ,Krishnamurthy B,Rabinovich M.Flash crowds and denial of service attacks:characterization and implications for CDNs and Web sites.In:Proceeding of the 11th IEEE Intemational World Wide Web Conference,Honolulu,Hawaii,May 2002
  • 3Michael Walfish,Mythili Vutukuru,Hari Balakrishnan,et al.DDoS defense by offense.In:Proceedings of SIGCOMM'06,Pisa,Italy,Sept 2006
  • 4Jin Cao,Cleveland W S,Yuan Gao,et al.Stochastic models for generating synthetic HTTP source traffic.In:Proceedings of IEEE INFOCOM,Hong Kong,China,March 2004
  • 5Lee Breslau,Pei Cao,Li Fan,et al.Web caching and Zipf-like distributions:evidence and implications.In:Proceeding of the IEEE INFOCOM'99,Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies,New York,NY,USA,March 1999
  • 6Christos Douligeris,Aikaterini Mitrokotsa.DDoS attacks and defense mechanisms:classification and state-of-the-art.Computer Networks,2004,44(5):643~666
  • 7Cabrera J B D,Lewis L,Qin X,et al.Proactive detection of distributed denial of service attacks using MIB traffic variables a feasibility study.In:Proceeding of the IEEE/IFIP International Symposium on Integrated Network Management,Seattle,WA,USA,May 2001
  • 8Cheng Jin,Haining Wang,Shin K G.Hop-count filtering:an effective defense against spoofed traffic.In:Proceedings of the 10th ACM Conference on Computer and Communications Security (CCS 2003),Washington,DC,USA,October 2003
  • 9Yoohwan Kim,Wing Cheong Lau,Mooi Choo Chuah,et al.PacketScore:statistics-based overload contril against distributed denial-of-service attacks.In:Proceedings of IEEE INFOCOM,Hong Kong,China,March 2004
  • 10Yu Chen,Kai Hwang,Yu-Kwong Kwok.Filtering of shrew DDoS attacks in frequency domain.In:Proceedings of the 30th Conference on Local Computer Networks(LCN),Sydney,Australia,November 2005

共引文献14

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部