期刊文献+

基于模糊补偿的机械手鲁棒自适应模糊控制研究 被引量:11

Research on the Robust Adaptive Fuzzy Control of Manipulators Based on Fuzzy Compensation
在线阅读 下载PDF
导出
摘要 多关节机械手系统中普遍存在摩擦特性、随机干扰及负载变化等非线性因素的影响。针对传统的PID控制和模糊控制很难对该类系统实现快速高精度的跟踪控制等问题,本文在模糊信息已知并且所有状态变量均可测得的情况下,设计了一种基于模糊补偿的鲁棒自适应模糊控制律。同时,为了减少模糊逼近的计算量,提高运算效率,采用了对不同的扰动补偿项加以区分、分别逼近的方法。仿真实验结果表明,这种改进的带模糊补偿的鲁棒自适应模糊控制可以很好地抑制摩擦、扰动及负载变化等非线性因素的影响。 There are friction characteristics, random disturbances, load variations and other nonlinear influencing factors in the multi-joint manipulator system generally. According to the problem that the traditional PID and fuzzy control are difficult to achieve rapid and high-precision tracking control for this kind of systems, a robust adaptive fuzzy control law is designed based on fuzzy compensation under the circumstance that the fuzzy information can be known and all the state variables can be measured. Simultaneously, in order to reduce the computational load of fuzzy approximation and improve the efficiency of mathematical operation, a method of distinguishing different disturbance compensation terms and approximating each of them respectively is adopted. The simulation results show that the robust adaptive fuzzy control based on fuzzy compensation can restrain friction, disturbance, load variations and other nonlinear influencing factors.
作者 董立红
出处 《计算机工程与科学》 CSCD 北大核心 2012年第1期169-173,共5页 Computer Engineering & Science
关键词 模糊补偿 机械手 鲁棒自适应模糊控制 非线性 fuzzy compensation manipulator robust adaptive fuzzy control nonlinear
作者简介 董立红(1968-),女,河北丰南人,博士,副教授,研究方向为数据挖掘、数据处理技术及煤矿安全监测监控技术。E-mail:Dong—el-@vip.163.com
  • 相关文献

参考文献7

二级参考文献31

  • 1Dixon W E, Zerqeroqlu E, Dawson D M. Global robust output feedback tracking control of robot manipulators[J]. Robotica, 2004, 22(4): 351-357.
  • 2Reyesa F, Kelly R. Experimental evaluation of model,based controllers on a direct drive robot arm[J]. Mechatronics, 2001, 11(3): 267-282.
  • 3Wai R J, Chen P C. Robust neural- fuzzy-network control for robot manipulator including actuator dynamics[J]. IEEE Transactions on Industry Electronics, 2006, 53(4): 1328-1349.
  • 4Ren Xuemei, Rad A B, Lewis F L. Neural network-based compensation control of robot manipulators with unknown dynamics[C]. The American Control Conference, New York, USA, 2007.
  • 5Lewis F L, Yesildirek A, Liu K. Multilayer neural-net robot controller with guaranteed tracking performance[J]. IEEE Transactions on Neural Networks, 1996, 7(2): 388-399.
  • 6Ge S S, Hang C C, Woon L C. Adaptive neural network control of robot manipulators in task space[J]. IEEE Transactions on Industrial Electronics, 1997, 44(6): 746-752.
  • 7Purwar S, Kar I N, Jha A N. Neuro sliding mode control of robotic manipulator[C]. IEEE Conference on Robotics, Automation and Mechatronics, Singapore, 2004.
  • 8Sun Fuchun, Sun Zengqi, Zhang R J, et al. Neural adaptive tracking controller for robot manipulators with unknown dynamics[J], IEE Proceedings-Control Theory and Applications, 2000, 147(3): 366-370.
  • 9Sun Fuchun, Li Hanxiong, Li Lei. Robot discrete adaptive control based on dynamic inversion using dynamical neural networks[J]. Automatica, 2002, 38(11): 1977-1983.
  • 10Jung S, Kim S S. Hardware implementation of a real-time neural network controller with a DSP and an FPGA for nonlinear systems [J]. IEEE Transactions on Industrial Electronics, 2007, 54(1): 265-271.

共引文献33

同被引文献81

引证文献11

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部