期刊文献+

回声状态网络的研究进展 被引量:28

Review on echo state networks
原文传递
导出
摘要 回声状态网络是近年来新兴的一种递归神经网络,独特而简单的训练方式以及高精度的训练结果已使其成为当前研究的热点之一.在该网络中,引入了储备池计算模式这一新的神经网络的建设方案,克服了之前网络模型基于梯度下降的学习算法所难以避免的收敛慢和容易陷入局部极小等问题.围绕这种新型网络结构,国内外许多学者开展了多样的研究.本文全面深入介绍了回声状态网络这一新兴技术,讨论了回声状态网络的优缺点,并综合近年的研究现状,总结了回声状态网络的主要研究工作进展和未来的研究方向. The echo state network(ESN) is a novel kind of recurrent neural network and has recently become a hot topic for its easy and distinctive training method along with high performance.In ESN,the reservoir computing method is introduced,which is a completely new approach used to design a recurrent neural network.By comparing this novel model with existing recurrent neural network models,it can overcome the difficulty encountered in slow convergence and local minimum in the gradient descent based training algorithm.Currently,there is considerable enthusiasm for the research and application of ESN.A review on ESN is presented in this paper.The advantages and drawbacks of ESN and various improvements are analyzed.Finally,some future research directions are also discussed.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2012年第2期217-222,共6页 Journal of University of Science and Technology Beijing
基金 国家自然科学基金资助项目(61174103 61074066 61004021) 中央高校基本科研业务费专项资金资助项目(FRF--TP--11--002B)
关键词 回声状态网络 储备池计算 递归神经网络 echo state networks reservoir computing recurrent neural networks
作者简介 通信作者:罗熊,E-mail:xluo@ustb.edu.cn
  • 相关文献

参考文献22

  • 1丛爽,戴谊.递归神经网络的结构研究[J].计算机应用,2004,24(8):18-20. 被引量:22
  • 2Jaeger H, Haas H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science, 2004, 304(5667) : 78.
  • 3Jaeger H. The Echo State Approach to Analyzing and Training Re- current Neural Networks: GMD Report 148. German National Re- search Center for Information Technology, 2001.
  • 4Zhang B, Wang Y. Echo state networks with decoupled reservoir states//Proceedings of the IEEE Workshop on Machine Learning for Signal Processing. Cancun, 2008 : 444.
  • 5Jaeger H. Reservoir riddles: suggestions for echo state network re- search//Proceedings of the IEEE International Joint Conference on Neural Networks. Montreal, 2005:1460.
  • 6Deng Z D, Zhang Y. Complex systems modeling using scale-free highly-clustered echo state network//Proceedings of the IEEE In- ternational Joint Conference on Neural Networks. Vancouver, 2006:3128.
  • 7Xue Y B, Yang L, Haykin S. Decoupled echo state networks with lateral inhibition. Neural Networks, 2007, 20(3): 365.
  • 8韩敏,史志伟,郭伟.储备池状态空间重构与混沌时间序列预测[J].物理学报,2007,56(1):43-50. 被引量:23
  • 9Jiang F, Berry H, Schoenauer M. Supervised and evolutionary learning of echo state networks//Proceedings of the lOth Interna- tional Conference on Parallel Problem Solving from Nature, Dort- mund, 2008:215.
  • 10Jaeger H. Short Term Memory in Echo State Networks: GMD Re- port 152. German National Research Center for Information Tech- nology, 2002.

二级参考文献50

共引文献86

同被引文献283

引证文献28

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部