期刊文献+

Effect of heat treatment of Mn-Cu precursors on morphology of dealloyed nanoporous copper 被引量:3

Effect of heat treatment of Mn-Cu precursors on morphology of dealloyed nanoporous copper
在线阅读 下载PDF
导出
摘要 Nanoporous copper with nano-scale pore size was synthesized by dealloying Mn-Cu precursor alloy using a free corrosion method. The effects of heat treatment of Mn-Cu precursors on alloy phase, morphology and composition of the resultant nanoporous copper were investigated. It is revealed that the compositions distribute homogeneously in the bulk Mn-Cu precursors, which consequently results in a more fully dealloying for forming nanoporous copper. The alloy phase changes from Cuo.a9Mno.51 and Cuo.21Mno.79 of non-thermally treated precursor to Cuo.33Mn0.67 of heat treated alloy. The residual Mn content in nanoporous copper is decreased from 12.97% to 2.04% (molar fraction) made from the precursor without and with 95 h heat treatment. The typical pore shape of nanoporous copper prepared by dealloying the precursor without the heat treatment is divided into two different zones: the uniform bi-continuous structure zone and the blurry or no pore structure zone. Nanoporous copper is of a uniform sponge-like morphology made from the heat-treated precursor, and the average ligament diameter is 40 nm, far smaller than that from the non-thermally treated precursor, in which the average ligament diameter is estimated to be about 70 nm. Nanoporous copper with nano-scale pore size was synthesized by dealloying Mn-Cu precursor alloy using a free corrosion method.The effects of heat treatment of Mn-Cu precursors on alloy phase,morphology and composition of the resultant nanoporous copper were investigated.It is revealed that the compositions distribute homogeneously in the bulk Mn-Cu precursors,which consequently results in a more fully dealloying for forming nanoporous copper.The alloy phase changes from Cu0.49Mn0.51 and Cu0.21Mn0.79 of non-thermally treated precursor to Cu0.33Mn0.67 of heat treated alloy.The residual Mn content in nanoporous copper is decreased from 12.97% to 2.04%(molar fraction) made from the precursor without and with 95 h heat treatment.The typical pore shape of nanoporous copper prepared by dealloying the precursor without the heat treatment is divided into two different zones:the uniform bi-continuous structure zone and the blurry or no pore structure zone.Nanoporous copper is of a uniform sponge-like morphology made from the heat-treated precursor,and the average ligament diameter is 40 nm,far smaller than that from the non-thermally treated precursor,in which the average ligament diameter is estimated to be about 70 nm.
作者 TAN Xiu-lan LI Kai NIU Gao YI zao LUO Jiang-shan LIU Ying HAN shan-jun WU Wei-dong TANG Yong-jian 谭秀兰;李恺;牛高;易早;罗江山;刘颖;韩尚君;吴卫东;唐永建(Research Center of Laser Fusion,China Academy of Engineering Physics,Mianyang 621900,China;College of Physical Science and Technology,Central South University,Changsha 410083,China;Department of Materials Science and Engineering,Sichuan University,Chengdu 610065,China)
出处 《Journal of Central South University》 SCIE EI CAS 2012年第1期17-21,共5页 中南大学学报(英文版)
基金 Project(10804101) supported by the National Natural Science Foundation of China Project(9140C6805021008) supported by the State Key Development Program for Basic Research of China Project(2007B08007) supported by the Science and Technology Development Foundation of Chinese Academy of Engineering Physics
关键词 nanoporous copper PREPARATION DEALLOYING heat treatment MORPHOLOGY 非热处理 锰铜 多孔 前兆 形态 平均直径 合金相 双连续结构
作者简介 Corresponding author:TANG Yong-jian,Professor,Tel:+86-816-2484233,E-mail:tx1725@tom.com
  • 相关文献

参考文献22

  • 1DING Y, KIM Y J, ERLEBACHER J. Nanoporous gold leaf: "Ancient technology" [J]. Advanced Materials, 2004, 16(21): 1897-1900.
  • 2VOLKERT C A, LILLEODDEN E T, KRAMER D, WEISSMULLER J. Approaching the theoretical strength in nanoporous Au [J]. Applied Physics Letters, 2006, 89: 061920.
  • 3ERTENBERG R W, ANDRAKA B, TAKANO Y. Prospects of porous gold as a low-temperature heat exchanger for liquid and solid helium [J]. Physica B, 2000, 2022: 284-288.
  • 4ZIELASEK V, JURGENS B, SCHULZ C, BIENER J, MONIKA M B, HAMZA A V, BAUMER M. Gold catalyst: Nanoporous gold foams [J]. Angew Chem Int Ed, 2006, 45: 8241-8244.
  • 5XU Cai-xia, XU Xiao-hong, SU Ji-xin, D1NG Y. Research on unsupported nanoporous gold catalyst for CO oxidation [J]. Journal of Catalysis, 2007, 252: 243-248.
  • 6ZEIS R, MATHUR A, FRITZ G, LEE J, ERLEBACHER J. Platinum-plated nanoporous gold: An efficient, low Pt loading electrocatalyst for PEM fuel cells [J], Journal of Power Sources, 2007, 165: 65-72.
  • 7ERLEBACHER J, AZIZ M J, KARMA A, DIMITROV N, SIERADZKI K. Evolution of nanoporosity in dealloying [J]. Nature, 2001, 410: 450-453.
  • 8ERLEBACHER J, SIERADZKI K. Pattern formation during dealloying [J]. Scripta Materialia, 2003, 49: 991-996.
  • 9LU X, BALK T J, SPOLENAKA R, ARZT E. Dealloying of Au-Ag thin films with a composition gradient: Influence on morphology of nanoporous Au [J]. Thin Solid Films, 2007, 515:7122-7126.
  • 10LU X, BISCHOFF E, SPOLENAKA R, BALK T J. Investigation of dealloying in Au-Ag thin films by quantitative electron probe microanalysis [J]. Scripta Materialia, 2007, 56: 557-560.

同被引文献23

  • 1谭秀兰,李恺,刘颖,吴卫东,罗江山,唐永建.去合金化工艺对纳米多孔铜孔结构的影响[J].稀有金属材料与工程,2010,39(11):2011-2014. 被引量:9
  • 2李开华,罗江山,刘颖,唐永建.泡沫镍制备中化学镀镍研究[J].强激光与粒子束,2007,19(7):1158-1162. 被引量:17
  • 3Ding Y, Kim Y J, Erlebacher J. Nanoporous gold leaf: "Ancient technology"/advanced material[J]. Advanced Materials, 2004 ,16(21): 1897-1900.
  • 4Li Long, Sieradzki K. Ductile brittle transition in random porous Au[J]. PhysRevLett, 1992, 68(8):1168-1171.
  • 5Ertenberg R W, Andraka B, Takano Y. Prospects of porous gold as a low-temperature heat exchanger for liquid and solid helium[J]. Physics B, 2000, 284/288:2022-2023.
  • 6Zielask V, Jiirgens B, Schulz C, et al. Gold catalyst: Nanoporous gold foams[J]. AngexaChem Int Ed, 2006, 45(48) :8241-8244.
  • 7Xu Caixia, Su Jixin, Xu Xiaohong, et al. Low temperature CO oxidation over unsupported nanoporous gold[J]. J Am Chem Soc, 2007, 129:42-43.
  • 8Zeis R, Mathur A, Fritz G. Platinum plated nanoporous gold: An efficient, low Pt loading electrocatalyst for PEM fuel cells[J]. Journal of Power Sources, 2007, 165(11) :65-72.
  • 9Volkert C A, Lilleodden E T, Kramer D, et al. Approaching the theoretical strength in nanoporous Au[J]. Appl Phys Lett, 2006, 89: 061920.
  • 10Renner F U, Grtinder Y, Lyman P F, et al. In-situ X ray diffraction study of the initial dealloying of Cu3 Au (001) and Cu0.83Pd0. 17 (001) [J]. Thin Solid Films, 2007, 515(14) :5574-5580.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部