期刊文献+

CdTe组件集成结构模拟优化及前、背电极接触电阻测定 被引量:1

INTEGRATIION STYDY OF CdTe THIN FILMS PV MODULE
在线阅读 下载PDF
导出
摘要 设计特定的测试结构,测量CdTe太阳电池组件的相邻单元电池的前电极与背电极的接触电阻,研究接触电阻与激光刻蚀刻痕的关系;使用module design simulator软件模拟分析相关膜层电子学性质、集成结构、单元电池性能对电池组件性能的影响。对CdTe电池组件接触电阻测量结果表明:随Ni层厚度增加,接触电阻减小,镍电极镀层较厚(410nm)时,接触电阻在10-3Ω.cm2数量级;加宽刻痕宽度使接触电阻略有下降;基频刻蚀CdTe层所得刻痕的接触电阻比倍频刻蚀高1~2个数量级。module design simulator软件模拟分析结果表明:CdTe薄膜太阳电池组件性能除与单元电池性能参数(转换效率、填充因子、短路电流、开路电压)相关外,单元电池宽度、TCO层方块电阻(或透过率)、CdTe层方块电阻、集成接触区接触电阻都对电池组件的性能存在影响。 The CdTe thin films PV module had been studied by measuring the contact resistance between the back contact metal and the front TCO film of the adjacent elementary cells. The "MODULE DESIGN SIMULATOR" software had been used to simulate the effects of the film electronic performance, the integration structure, and the contact elementary cell characteristics on module characteristics. The contact resistance decreases with the increasing of the thickness of Ni film. And the contact resistance increases 1-2 orders of magnitude when the CdTe films were etched by basic frequency laser. The highest efficiency corresponds with the optimized cell width and the width of the notches. The unit cell width, sheet resistance of TCO & CdTe, and TCO/Ni contact resistance have great effect on the property of the module, respectively. With the increasing of TCO sheet resistance, the conversion efficiency firstly increase sharply and then decrease slowly. Increasing the sheet resistance of CdTe will lead to the increasing of both conversion efficiency and fill factor.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2011年第12期1758-1763,共6页 Acta Energiae Solaris Sinica
关键词 CDTE 集成太阳电池 接触电阻 仿真模拟 CdTe integrated solar cells contact resistant simulation
作者简介 通讯作者:张静全(1970-),男,博士、教授,主要从事太阳电池材料与器件方面的研究。zh-jq2000@263.net
  • 相关文献

参考文献4

  • 1Greene M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables ( Version 33) [ J ]. Progress Photovoltaics : Research and Applications, 2009, 17( 1 ) : 85--94.
  • 2冯良桓.迎接光伏发电新时代[A].第十届中国太阳能光伏会议[C],常州,2008.
  • 3Westin P O, Zimmermann U, Edoff M. Laser patterning of P2 interconnect via in thin-film CIGS PV modules [ J ]. Solar Energy Materials and Solar Cells, 2008, 92 (10) : 1230-1235.
  • 4Burgelman M, Niemegeers A. Calculation of CIS and CdTe module efficiencies[ J]. Solar Energy Materials and Solar Ceils, 1998, 51(2) : 129-143.

同被引文献22

  • 1何一坚,陈光明.新型吸收制冷系统实验研究[J].太阳能学报,2007,28(2):137-140. 被引量:5
  • 2Groll E. Current status of absorption/compression cycle technology [J]. ASHRAE Trans., 1997, 103 (1): 564-578.
  • 3Groll E. Modeling of absorption/compression cycles using working pair carbon dioxide/acetone [J]. ASHRAE Trans., 1997, 103: 863-871.
  • 4Ziegler F, Alefeld G. Coefficient of performance of multistage absorption cycles [J]. International Journal of Refrigeration, 1987, 10: 285-296.
  • 5Chen Guangming, Hihara E. A new absorption refrigeration cycle using solar energy [J]. Solar Energy, 1999, 66 (6): 479-482.
  • 6Ventas R, Lecuoua A, Zacarias A. Ammonia-lithium nitrate absorption chiller with an integrated low-pressure compression booster cycle for low driving temperatures [J]. Applied Thermal Engineering, 2010, 30: 1351-1359.
  • 7Desideri U, Proietti S, Sdringola P. Solar-powered cooling systems: technical and economic analysis on industrial refrigeration and air-conditioning applications [J]. Appli. Energ., 2009, 86 (9): 1376-1386.
  • 8Wang Ruzhu, Li Ying. Perspectives for natural working fluids in China [J]. Int. J. Refrig., 2007, 30 (4): 568-581.
  • 9Scott S W, Mark J M, George M. Experimental and modeling improvements to a co-fluid cycle utilizing ionic liquids and carbon dioxide// 15th Intern. Refrig. and Air Conditioning Conference [C]. Purdue, USA: School of Mechanical Engineering, 2014: 1-10.
  • 10Wei Ren. High-pressure phase equilibria of ionic liquids and compressed gases for applications in reactions and absorption refrigeration [D]. USA: University of Kansas, 2009.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部