期刊文献+

基于ITK和VTK的脊髓扩散张量成像实现 被引量:5

Implementation of spinal cord diffusion tensor imaging based on ITK and VTK
在线阅读 下载PDF
导出
摘要 扩散张量成像是一种新的磁共振成像技术,比传统的扩散加权成像更能够准确地反映出水分子的扩散情况。在脊髓的扩散张量成像方面的研究成果并不多,且存在很大的发展空间。提出并实现了基于ITK和VTK的脊髓图像扩散张量成像系统,其中使用ITK实现图像三维配准和扩散张量及其旋转不变量的计算等功能,使用VTK辅助完成三维图像显示,为脊髓扩散张量成像进一步研究提供了一个研究平台。仿真结果表明,该平台可以有效地完成扩散张量成像及显示等功能。 Diffusion tensor imaging is a new magnetic resonance imaging technique,which can reflect the diffusion of water molecular more accurately than diffusion weighted imaging.Now only a few research results have been published in spinal cord diffusion tensor imaging and there is still a huge development space for it.A diffusion tensor imaging system for spinal cord based on ITK and VTK is proposed,in which 3D image registration,diffusion tensor and its rotation invariant parameters calculation arevimplemented by ITK,and 3D image display is assisted by VTK.The system provides a platform for spinal cord diffusion tensor imaging research.Simulation results show that this platform can effectively realize the function of diffusion tensor imaging and display.
作者 苏育挺 董博
出处 《电子测量技术》 2011年第12期54-57,共4页 Electronic Measurement Technology
关键词 扩散张量成像 ITK VTK 脊髓 diffusion tensor imaging ITK VTK spinal cord
作者简介 苏育挺,男,1972年出生,工学博士,教授,主要研究方向为数字视频编码,多媒体取证,医学图像处理。E—mail:ytsu@tju.edu.cn董博,男,1986年出生,硕士研究生,从事医学图像处理与数字视频处理方面研究。E—mail:dongbo@tju.edu.cn
  • 相关文献

参考文献10

二级参考文献114

共引文献94

同被引文献41

  • 1BASSER P J, MATTIELLO J, LEBIHAN D. Estima- tion of the effective self-diffusion tensor from the NMR spin echo [J]. J. Magn. Reson. B, 1994(103) 247-254.
  • 2LIU Z,WANG Y, GERIG G. Quality control of diffu- sion weighted images [ J ]. Proe SPIN, 2010 (17) 17628.
  • 3BASSER P J, MATTIELLO D,BIHAN L. MR diffusion tensor spectroscopy and imaging [J]. Biophys J, 1994 (66) .259-267.
  • 4BATCHELOR P G,MOAKHER M,ATKINSON D. A rigorous framework for diffusion tensor calculus [J]. Magn Reson Med 2005,2005(53) :221-225.
  • 5HOTZ I, SREEVALSAN N J, HAMANN B. Tensor field reconstruction based on eigenvector and eigenvalue interpolation [M]. Hagen, H. (Ed.), Scientific Visualization Advanced Concepts. IEEEComputer Society Press, Los Alamitos, California, 2010:110-123.
  • 6YANG F, ZHU Y M, MAGNIN I E. Feature-based interpolation of diffusion tensor fields and application to human cardiac DT-MRI . Medical Image Analysis, 2012,16 (2) :459-481.
  • 7KRUCKER J F, MEYER C R, LECARPENTER G L,et al. 3D spatial compounding of ultrasound imagesusing image-based non-rigid registration[J]. Ultrasound in Med&Biol, 2000,26 (9) : 1475-1488.
  • 8SCHNABEL J A,TANNER C,CASTELLANO-SMITH A D, et al. Validation of non-rigid image registration using finite-element methods: application to breast MR images [J]. IEEE Transactions on Medical Imaging,2003,22(2) :238 247.
  • 9MATTES D, HAYNOR D R,VESSELI.E H,et al. PET-CT image registration in the chest using free- form deformations [J].IEEE Trans Med Imaging, 2003,22(1) :120-128.
  • 10KENNEDY J,EBERHART R C. Particle swarm opti- mization[C]. Proe of IEEE Int Conf on Neural Networks. New York:IEEE, 1995 : 1942-1948.

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部