期刊文献+

基于停机时间的可修串联系统的维修更换策略 被引量:5

Maintenance and replacement policy for a series repairable system based on downtime
在线阅读 下载PDF
导出
摘要 为了求得k个不同型部件串联可修系统的平均停机时间,提出了一种维修更换模型。假设系统中每个部件维修后均不能"修复如新",部件每次失效时延迟修理的概率为1-pi(i=1,2,…,k),利用几何过程、α-幂过程和更新过程理论,在更换策略M=(N1,N2,…,Nk)下得出系统经长期运行单位时间内期望费用和平均停机时间的表达式,并以费用率为约束条件,以停机时间为目标函数建立优化模型;给出数值例子,用MATLAB验证了该模型的合理性。仿真试验表明:存在最优更换策略M*,满足费用率约束条件下使得平均停机时间最短。 In order to obtain the expected downtime of a-dissimilar-identical component series repairable system,a new maintenance and replacement model is proposed in this study.Assuming that each component after repair is not "as good as new",and a repair can be delayed with a probability of 1-pi(i=1,2,…,k),the expressions of the long run average cost and the expected downtime per unit time under policy M=(N1,N2,…,Nk) can be obtained by using geometric process,power process and renewal process.Also,the replacement policy model with minimizing the expected downtime rate subject to an appropriate cost rate can be got.A case study on a numerical example is conducted to prove the rationality of the new model using MATLAB.The simulation experiment indicates that there is an optimal policy which enables a shortest average downtime to satisfy the constraints of cost rate.
机构地区 燕山大学理学院
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2011年第6期926-929,共4页 Journal of Liaoning Technical University (Natural Science)
基金 全国统计科研计划基金资助项目(2010LC33) 河北省教育厅基金资助项目(2007323) 河北省自然科学基金资助项目(A200500301)
关键词 延迟修理 串联系统 几何过程 幂过程 更新报酬定理 维修更换模型 平均停机时间 仿真试验 delay repair series system geometric process power process renewal reward theorem maintenance and replacement model expected downtime simulation experiment
作者简介 作者简介:孟宪云(1954-),女,黑龙江尚志人,教授,主要从事系统可靠性分析与优化方面的研究。
  • 相关文献

参考文献11

  • 1Khalil Z S, Availability of series system with various hut-off rules[J].IEEE Trans. Reliability R, 1985,34:187-189.
  • 2Chao M T, Fu J C, The reliability of a large series system under Markov structure[J]. Advanced Applied Probability, 1991,23:894-908.
  • 3Lam Yeh, Geometric processes and replacement problem[J].ACTA Mathematic Applicate Sinica, 1988, 4(4):366-377.
  • 4Lam Yeb, A note on the optimal replacement problem[J].Advanced Applied Probability, 1988,20: 479-482.
  • 5Braun W J, Li W, Zhao Y Q.Some theoretical properties of geometric and a- series process[J]. Communications in Statistics Theory and Methods, 2008,37:1483-1496.
  • 6Yuan Lin Zhang. A geometric process repair model for a repairable system with delayed repair[J]. Computers and Mathematics with Applications, 2008(55): 1629-1643.
  • 7Guan Jun Wang, Yuan Lin Zhang. An optimal replacement policy for a two-component series system assuming geometric process[J]. Computers and Mathematics with Applications,2003,54:192-202.
  • 8Yuan Lin Zhang, Guan Jun Wang .A geometric process repair model for a series repairable system with k dissimilar components[J].Applied Mathematical Modelling,2007,31 : 1997-2007.
  • 9ZHOU Yu xia.Monotonicity of the optimal replacement policy for the a- power process maintenance model[J].Joumal of Sichuan University,2007,44(2):221-224.
  • 10李继祥,高建强,于振林.基于可靠性分析的近海工程结构分析与评价[J].辽宁工程技术大学学报(自然科学版),2001,20(2):162-165. 被引量:3

二级参考文献15

  • 1Barlow R E, Hunter L C. Optimum preventive maintenance policy [J]. Operations Research, 1960, 8:90- 100.
  • 2Brown M, Proschan F. Imperfect repair[J]. Application Probability, 1983, 20:851 - 859.
  • 3Pham H, Wang H. Imperfect maintenance[J]. European Journal of Operational Research, 1996, 94 : 425 - 438.
  • 4Lam Y. A note on the optimal replacement problem [ J ]. Advances in Applied Probability, 1988, 20: 479- 482.
  • 5Zhang Y L, Wang G J. A bivariate optimal replacement policy for a multistate repairable system [ J ]. Reliability Engineering and System Safety, 2007, 92: 535- 542.
  • 6Lam Y. A geometric process maintenance model [ J ]. Southeast Asian Bulletin of Mathematics, 2003, 27:295 - 305.
  • 7Lam Y. A geometric process maintenance model with preventive repair[ J ]. European Journal of Operational Research, 2007, 182 : 806 - 819.
  • 8Lam Y, Zhang Y L. Analysis of a two-component series system with a geometric process model [ J ]. Naval Research Logistics, 1996, 43: 491- 502.
  • 9Zhang Y L, Wang G J. A geometric process repair model for a series repairable system with k dissimilar components [ J ]. Applied Mathematical Modeling, 2007, 31: 1997-2007.
  • 10Wang G J Zhang Y L. An optimal replacement policy for a two-component series system assuming geometric process repair [J]. Computers and Mathematics with Applications, 2007, 54:192 - 202.

共引文献8

同被引文献46

  • 1贾积身,张秋生,李爱真.基于系统平均停机时间的维修策略研究[J].河南机电高等专科学校学报,2006,14(4):1-2. 被引量:4
  • 2贾积身,刘思峰,党耀国.修理工单重休假可修系统平均停机时间研究[J].系统工程与电子技术,2006,28(11):1770-1774. 被引量:7
  • 3贾积身,刘思峰,党耀国.冷贮备可修系统的维修更换模型[J].南京航空航天大学学报,2007,39(4):544-549. 被引量:6
  • 4贾积身,刘思峰,党耀国.修理工多重休假的可修系统更换策略[J].系统管理学报,2007,16(5):513-517. 被引量:7
  • 5Eggenberg N, Salani M,Bierlaire M.Constraint-specific recovery network for solving airline recovery problems[J].Computers & Operations Research,2010,37(6):1 014-1 026.
  • 6Thengvall B,Bard J,Yu G.Balancing user preferences for aircraft schedule recovery during irregular operations[J].Institute of Industrial Engineers Transactions,2000,32(3): 181-193.
  • 7Argullo M F.A GRASP for aircraft routing in response to groundings and delays[J].Journal of Combinatorial Optimization, 1997,1 (3):211-228.
  • 8Le Meilong.Solving the airline recovery problem based on vehicle routing problem with time window modeling and Genetic Algorithm[J]. International Conference on Natural Computation,2013,9(3): 817-823.
  • 9Guo Wei,Yu Gang.Optimization model and algorithm for crew management during airline irregular operations[J].Joumal of Combinatorial Optimization, 1997,1(3):305-321.
  • 10Tobias Andersson Granberg,Peter Varbrand.The flight perturbation problem[J] Transportation planning and tedmology,2004,27(2):91 -117.

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部