期刊文献+

广义d-ρ-(η,θ)一致不变凸多目标规划的最优性条件及对偶 被引量:1

Optimality Conditions and Duality for Multiobjective Programming under Generalized d-ρ-(η,θ)-univexity
在线阅读 下载PDF
导出
摘要 在d-ρ-(η,θ)不变凸和一致凸函数基础上,提出了d-ρ-(η,θ)一致不变凸函数,并研究了广义d-ρ-(η,θ)一致不变凸多目标规划下可行解为有效解或弱有效解的几个充分条件,以及Mond-Weir和Wolf型下对偶的相关结论. This paper introduces the concepts of d-ρ(η,θ)-univex functions, based on the concepts of d-ρ(η,θ)-invex function and univex function. Using these concepts, several sufficient optimality conditions for feasible solution to be an efficient or a weak efficient solution are obtained and some duality theorems for Mond-Weir and Wolf duality are derived.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第6期7-13,共7页 Journal of Henan Normal University(Natural Science Edition)
基金 中央高校基本科研业务费专项资金资助(K50510700004)
关键词 多目标规划 广义d-ρ(η θ)一致不变凸 对偶 最优性 multiobjective programming generalized d-ρ(η,θ)-univexity duality optimality
作者简介 汪春峰(1978-),男,河南开封人,河南师范大学讲师,在读博士,主要从事最优化理论及应用的研究.
  • 相关文献

参考文献10

  • 1Jeyakumar W. Strong and weak invexity in mathematical programming[J]. European Journal of Operational Research, 1985,55 : 109-125.
  • 2Ye Y L. d-invexity and optimality conditions[J]. Journal of Mathematical Analysis and its Application, 1991,162:242-249.
  • 3Kaul R N, Suneja S K, Srivastava M K. Optimality criteria and duality in multiple objective optimization involving generalized invexity [J]. Journal of Optimization Theory and its Applications, 1994,80:465-482.
  • 4申培萍,汪春峰.关于(F,ρ)-不变凸函数多目标规划的对偶性[J].河南师范大学学报(自然科学版),2005,33(3):1-3. 被引量:5
  • 5Hanson M A. On Sufficiency of Kunh-Tueker conditions[J]. Journal of Mathematical Analysis and Application,1981,80:545-550.
  • 6Ben-Isreal A, Mond B. What is invexity[J]. Journal of Australian Society, 1986,28 :1-9.
  • 7Das L N, Nanda S. Proper efficiency conditions and duality for multiobjective programming problems involving semilocally invex functions[J] Optimization, 1995,34 : 43-51.
  • 8Nahak C, Nanda S. Multiobjective duality with p-(η,θ)-invexity[J]. Journal of Applied Mathematics and Stochastic Analysis, 2005,205: 175-180.
  • 9Nahak C, Mohapatra R N. d-p-(η,θ)-invexity in multiobjeetive optimization[J]. Nonlinear Analysis,2009,70:2288-2296.
  • 10Antczak T. Multiobjective programming under d-invexity[J]. European Journal of Operational Research,2002,137:28-36.

二级参考文献3

共引文献4

同被引文献11

  • 1Lee C Y,Lei L,Pinedo M.Current trends in deterministic scheduling[J].Annals of Operations Research,1997,70:1-41.
  • 2Sanlaville E,Schmidt G.Machine scheduling with availability constraints[J].Acta Informatica,1998,35:795-811.
  • 3Schmidt G.Scheduling with limited machine availability[J].European Journal of Operational Research,2000,121:1-15.
  • 4Lee C Y.Machine scheduling with an availability constraint[J].Journal of Global optimization,1996,9:395-416.
  • 5Kacem I.Approximation algorithms for the makespan minimization with positive tails on a single machine with a fixed nonavailability interval[J].Journal of Combinatorial Optimization,2009,17:117-133.
  • 6Ibarra O,Kim C E.Fast approximation algorithms for the knapsack and sum of subset problems[J].Journal of the Association for Computing Machinery,1975,22:463-468.
  • 7Breit J,Schmidt G,Strusevich V A.Non-preemptive two-machine open shop scheduling with non-availability constraints[J].Mathematical Methods of Operations Research,2003,57:217-234.
  • 8Liao C J,Shyur D L,Lin C H.Makespan minimization for two parallel machines with an availability constraint[J].European journal of operational Research,2005,160:445-456.
  • 9Cheng T C E,Wang G.An improved heuristic for two-machine flowshop scheduling with an availability constraint[J].Operation Research Letters,2000,26:223-229.
  • 10Wang G,Cheng T C E.Heuristics for two-machine no-wait flowshop scheduling with an availability constraint[J].InformationProcessing Letters,2001,80:305-309.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部