期刊文献+

非完整约束多体系统时间离散变分积分法 被引量:6

TIME-DISCRETE VARIATIONAL INTEGRATOR FOR MULTIBODY DYNAMIC SYSTEMS WITH NONHOLONOMIC CONSTRAINTS
在线阅读 下载PDF
导出
摘要 基于连续Galerkin方法,给出非完整约束下多体系统时间离散的变分数值积分方法.首先对非完整多体系统Hamilton正则方程的弱形式进行时间离散,得到变分积分公式,然后讨论该积分方法对能量及约束的保持,最后以蛇板为例对该方法进行数值验证和比较. Based on the continuous Galerkin muhibody dynamic systems with nonholonomic method, a time-discrete variational integrator was presented for constraints. The weighted residual statements of Hamilton' s canonical equations were taken firstly. Then time-stepping schemes were outlined, and algorithmic conservations were discussed. Finally, a simplified model of the skateboard validated the accuracy and efficiency of the method presented.
出处 《动力学与控制学报》 2011年第4期289-292,共4页 Journal of Dynamics and Control
基金 国家自然科学基金资助项目(10972110 11002075)~~
关键词 多体系统 非完整约束 数值积分 GALERKIN方法 蛇板 muhibody systems, nonholonomic constraints, numerical integration, Galerkin method, snakeboard
  • 相关文献

参考文献9

  • 1Bloch A M . Nonholonomic mechanics and control. Spring- er-Verlag, New York, 2003.
  • 2Cortes Monforte J. Geometric Control and Numerical As- pects of Nonholonomic Systems. Springer-Verlag, New York, 2002.
  • 3Hulme B L. One-step piecewise polynomial Galerkin meth- ods for initial value problems. Math. Comput, 1972, 26 (118) : 415-426.
  • 4Betsch P, Steinmann P. Conservation properties of a time FE method-part III: Mechanical systems with holonomic constraints. International Journal for Numerical Methods in Engineering, 2002,53 : 2271 -2304.
  • 5Cortes J. Energy conserving nonholonomic integrators. Pro- ceedings of the fourth international conference on dynamical systems and differential equations, Wilmington, NC, USA. 2002 : 189 - 199.
  • 6Betsch P. Energy-consistent numerical integration of me- chanical systems with mixed holonomic and nonholonomic constraints. Computer Methods in Applied Mechanics and Engineering, 2006,195 : 7020 - 7035.
  • 7McLachlan R, Perlmutter M. Integrators for nonholonomic mechanical systems. Nonlinear Science, 2006,16 : 283 - 328.
  • 8Ferraro S, Iglesias D, Martin de Diego D. Momentum and energy preserving integrators for nonholonomic dynamics. Nonlinearity, 2008,21 : 1911 - 1928.
  • 9Lewis A D, Ostrowski J P, Burdick J W, Murray R M. Nonholonomic mechanics and locomotion: the Snakeboard example: Proceedings of the 1994 IEEE International Con- ference on Robotics and Automation, 1994:2391 - 2400.

同被引文献39

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部