期刊文献+

面向物联网移动感知的服务节点发现算法 被引量:6

An Algorithm to Discover Service Nodes for Mobility-Aware in the Internet of Things
在线阅读 下载PDF
导出
摘要 针对物联网移动感知场景中节点移动性、随机性在时间和空间两方面给数据感知、数据传递造成的问题,提出一种基于节点社会关系认知的目标区域感知服务节点发现算法.引入交互因子和距离因子对节点社会关系进行量化,构建节点移动概率表和凝聚子群,通过信任传递与社会关系最优路径树的计算,确定目标区域感知服务节点集.仿真实验表明,该算法缩短了移动节点间最短距离以及网络平均距离,提高了感知服务节点的发现效率,解决了稀疏网络的感知空洞问题,改善了物联网感知服务质量. An awareness algorithm to discover service nodes is proposed to deal with the problem of data-awareness and data-transmit in both time and space in mobility-aware of Internet of Things(IoT),which is caused by nodes mobility and random.The algorithm bases on social relations cognition,and quantizes the social relation of all nodes by introducing interconnection factor and distance factor.Then,cohesive subgroups and a node-mobile probability table are constructed to predict the trace of mobile nodes.Finally,awareness service nodes in the objective regions are determined through trust-transference and probability tree calculation.Simulation experiments show that the proposed method effectively reduces both the shortest distance among mobile nodes and the network average distance,improves the way of date acquisition and increases the quality of awareness service in IoT.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2011年第12期6-9,共4页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(60873071 91018011 61172090) 国家"863计划"资助项目(2008AA01Z410) IBM共享大学研究(SUR)资助项目(SUR201001X)
关键词 物联网 移动感知 感知服务节点发现算法 最短距离 服务质量 Internet of Things mobile-awareness awareness service nodes discovery algorithm shortest distance quality of service
作者简介 安健(1983-),男,博士生; 桂小林(通信作者),男,教授,博士生导师.
  • 相关文献

参考文献8

  • 1ATZORI L, IERA A, GIACOMO M. The internet of things: a survey[J]. Computer Networks, 2010, 54: 2787-2805.
  • 2LANE N D, MILUZZO E, LU Hong, et al. A survey of mobile phone sensing [J]. IEEE Communications Magazine, 2010,48(9): 140-150.
  • 3YANG Shusen, YANG Xinyu, ZHANG Chao, et al. Using social network theory for modeling human mobility[J]. IEEE Network, 2010,24(5) : 6-13.
  • 4李小勇,桂小林.可信网络中基于多维决策属性的信任量化模型[J].计算机学报,2009,32(3):405-416. 被引量:69
  • 5ZHANG Huiqi, DANTU R. Predicting social ties in mobile phone networks [C] //Proceedings of 2010 IEEE Intelligence and Security Informatics. Piscataway, NJ, USA: IEEE, 2010:25-30.
  • 6GIANNOTTI F, NANNI M, PEDRESCHI D, et al. Mining mobility behavior from trajectory data[C]// Proceedings of 12th IEEE International Conference on Computational Science and Engineering. Piscataway, NJ ,USA: IEEE, 2009 : 948-951.
  • 7杨博,刘大有,LIU Jiming,金弟,马海宾.复杂网络聚类方法[J].软件学报,2009,20(1):54-66. 被引量:214
  • 8EAGLE N, PENTLAND A, LAZER D. Inferring friendship network structure by using mobile phone data[J].Proceedings of the National Academy of Sciences, 2009,106(36) :15274-15278.

二级参考文献75

共引文献281

同被引文献94

  • 1李云,隆克平,赵为粮,陈前斌.IEEE802.11无线局域网中一种支持业务区分的回退算法[J].电子学报,2006,34(10):1877-1880. 被引量:10
  • 2李小勇,桂小林.大规模分布式环境下动态信任模型研究[J].软件学报,2007,18(6):1510-1521. 被引量:138
  • 3国家技术监督局计量司.90国际温标通用热电偶分度表手册[M].北京:中国计量出版社,1994.
  • 4李小勇,桂小林,赵娟,冯大鹏.一种可扩展的反馈信任信息聚合算法[J].西安交通大学学报,2007,41(8):879-883. 被引量:9
  • 5Atzori L, Iera A, Giaeomo M. The Internet of Things: A survey. Computer Networks, 2010, 54(15): 2787-2805.
  • 6Lazer D, Pentland A, Adamic L et al. Computational social science. Science, 2009, 323(5915:721-723.
  • 7Subrahmanian V S. Cultural modeling in real time. Science, 2007, 317(5844):1509-1510.
  • 8Gonzalez M C, Hidalgo C A, Barabasi A L. Understanding individual human mobility patterns. Nature, 2009, 458 (7235) :238-239.
  • 9Grossetti M. Where do social relations come from? A study of personal networks in the Toulouse area of France. Social Networks, 2005, 27(4): 289-300.
  • 10Newman M. Modularity and community structure in net- works. Proceedings of the National Academy of Sciences, 2006, 103(23): 8577-8582.

引证文献6

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部