期刊文献+

基于经验模态分解的间接心电去噪 被引量:2

Mode-based ECG indirect denoising using empirical mode decomposition
原文传递
导出
摘要 提出了一种基于心电图(ECG)动态模型和经验模式分解(EMD)的新颖心电间接去噪方法.通过设计一个心电信号模型对噪声ECG进行预滤波处理,为了保持重要的形态特征,尤其是QRS群波,从噪声ECG信号中减去这个模型,用EMD分解残存下来的信号,并且抛弃分解结果中的噪声成分达到去噪.最后,通过把模型和无噪的残余信号叠加起来获得无噪ECG波形. A novel scheme for Electrocardiogram (ECG) indirect denoising is presented based on ECG dynamic model and Empirical mode decomposition (EMD) in the paper. First, we pre-filter the noisy ECG by making the mode fit it, in order to preserve the important morphologic features, especially the QRS complex. Then, the model is subtracted from the noisy ECG, and the residual signal is decomposed with EMD and denoised by discarding the noise components from the decomposition results. Finally, the resultant ECG is obtained by combining the model and the denoised residue.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第6期1329-1333,共5页 Journal of Sichuan University(Natural Science Edition)
关键词 心电图(ECG) 动态模型 经验模式分解(EMD) QRS群波 Electrocardiogram (ECG), dynamic model, Empirical mode decomposition (EMD), QRS complex
作者简介 聂文仲(1986-),男,四川资中县人.四川大学电气信息学院在读硕士,主要从事医学信号处理与智能医学仪器研究.E—mail:nievinzhong@163.com 通讯作者:黄华.E-mail:hhua@scu.edu.cn
  • 相关文献

参考文献12

  • 1Gotchev A, Nikolaev N, Egiazarian K. Improving the transform domain ECG denoising performance by applying interbeat and intra-beat decorrelating transforms[J]. IEEE International Symposium on Circuits and Systems, 2001,2 : 17.
  • 2Huang N E, Long S R,Shen Z, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis [J]. Proceedings of the Royal Society, Mathematical, physical and engineering sciences, 1998,454 (1971):903.
  • 3王玉静,宋立新.基于EMD和Hilbert变换的心电信号去噪方法[J].哈尔滨理工大学学报,2007,12(4):70-73. 被引量:5
  • 4McSharry P E, Clifford G D, Tarassenko L, et al. A dynamical model for generating synthetic electrocardiogram signals[J]. IEEE Transactions on Biomedical Engineering, 2003, 50(3):289.
  • 5Sameni R, Shamsollahi M B,J utten C, et al. Filtering noisy ECG signals using the extended Kalman filter based on a modified dynamic ECG model[J]. Computer in Cardiology, 2005,32 : 1017.
  • 6Clifford G D, Shoeb A, McSharry P E, et al. Model --based filtering, compression and classification of the ECG[J]. International Journal of Bioeleetromagnetism ,2005,7(1) : 158.
  • 7Lu Y, Yan J Y, Yeung Y. Model-based ECG denoising using empirical mode decomposition[J]. IEEE Inter- national Conference on Bioinformatics and Biomedicine ,2009,1 (14) : 191.
  • 8Flandrin P, Goncalves P. Empirical mode decompositions as data-driven wavelet-like expansions[J]. International Journal of Wavelets Multiresolution and Information Processing,2004,2(4) :477.
  • 9Blanco-Velasco M, Weng B, Barner K E. ECG signal denoising and baseline wander correction based on the empirical mode decomposition[J]. Computers in Biology and Medicine, 2008,38 (1) : 1.
  • 10Dauwels J, Rutkowski T M, Vialatte F, et al. On the synchrony of empirical mode decompositions with application to eleetroencephalography[J].Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, 2008,4 : 473.

二级参考文献7

  • 1JAN J A V,SCHILDEN T S.Removal of Baseline Wander and Powerline Interference from the ECG by an Efficient FIR Filter with Reduced Number of Taps[J].IEEE Trans.on Biomed.Eng.,1985,32 (12):1052-1060.
  • 2MALLAT S.A Wavelet Tour of Signal Processing[M].Academic Press,1998.
  • 3DONOHO D L.De-noising by Soft-thresholding[J].IEEE Trans.Inform.,Theory,1995,41(3):613-627.
  • 4HUANG N E,SHEN Z,LONG S R,et al.The Empirical Mode Decomposition Method and the Hilbert Spectrum for Non-stationary Time Series Analysis[J].Proc.Royal.Soc.London A,1998,454:903-995.
  • 5BOUDRAA A O,CEXUS J C,SAID Z.EMD-based Signal Noise Reduction[J].International Journal of Signal Processing,2004,1(1):33-36.
  • 6NORDEN E H,WU Zhao-hua.A Study of the Characteristics of White Noise Using the Empirical Mode Decomposition Method[J].Proc.R.Soc.Lond.A,2004,454:1597-1611.
  • 7ZHANG Shu-jing,QI Li-xin.Analysis of Time Series[M].Beijing:TsingHua,2003.

共引文献4

同被引文献17

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部