期刊文献+

基于多约束的机器人关节空间轨迹规划 被引量:28

Joint-space Trajectory Planning for Robots under Multiple Constraints
在线阅读 下载PDF
导出
摘要 当机器人进行快速运动且运动时间确定时,由于受到驱动机构性能等因素的制约,机器人进行运动轨迹规划时需要考虑角加速度约束、角速度约束和角度约束等多个约束条件。通过对运动约束进行分析,提出基于梯形速度曲线的多约束条件下机器人关节空间轨迹规划方法。根据无约束条件下规划出的最小加速度运动轨迹,在角加速度满足约束的情况下对其进行优化,获得满足角速度约束和角度约束的最小角加速度运动轨迹。对加速度达到最大时的轨迹也无法满足约束条件的情况进行讨论。该轨迹规划方法兼顾机器人的运动平稳性与约束要求,并且能够充分发挥机器人关节的驱动性能。仿真结果表明了该方法的可行性。 In the cases that the robots move fast with fixed motion time,various constraints,such as angular acceleration constraint,angular velocity constraint and angular constraint,should be considered when planning the trajectories of robots due to the driver performances and other factors.By analyzing the constraints,a joint-space trajectory planning method for robots under multiple constraints is proposed based on trapezoidal velocity profile.According to the minimum acceleration trajectory without constraints,the minimum acceleration trajectory under the angular velocity constraint and angular constraint is obtained by optimizing the angular acceleration while it is in the constraint range.The situation that the trajectory with maximum acceleration cannot meet the constraint requirements is discussed.The trajectory planning method takes into account both the moving stability and the constraints and can give full joint driving performances.Simulation results show the feasibility of the method.
作者 张斌
出处 《机械工程学报》 EI CAS CSCD 北大核心 2011年第21期1-6,共6页 Journal of Mechanical Engineering
基金 国家高技术研究发展计划资助项目(863计划 2008AA042601)
关键词 机器人 关节空间 轨迹规划 约束 Robot Joint-space Trajectory planning Constraints
作者简介 作者简介:张斌(通信作者),男,1981年出生,助理研究员。主要研究方向为机器人学及先进制造技术。E—mail:zhwwbinl@163.com
  • 相关文献

参考文献9

  • 1NEJAH T, TREVOR E B, MOHAMED A E. Minimum time trajectory planning along specified tool path with consideration of cutting force constraint and feed drive dynamics[C]// International Mechanical EngineeringCongress & Exposition, November 17-22, 2002, University of Virginia, New Orleans. New York: ASME, 2002: 1-11.
  • 2LI Haifeng, LIU Jingtai, LI Yan, et al. Trajectory planning for visual servoing with some constraints[C]//The 29thChinese Control Conference, July 29-31, 2010, Beijing Institute of Technology, Beijing. Washington DC. IEEE, 2010: 3636-3642.
  • 3CHO B H, CHOI B S, LEE J M. Time-optimal trajectory planning for a robot system under torque and impulse constraints[C]//The 30th Annual Conference of the IEEE Industrial Electronics Society, November 2-6, 2004, Pusan National University, Pusan. Washington DC- IEEE, 2004.. 1058-1063.
  • 4MITI R, SH1NICHIRO N. Offline and online trajectory generation with sequential physical constraints[C]// International Conference on Robotics and Biomimetics, February 21-26, 2009, Asian Institute of Technology, Bangkok. WashingtonDC: IEEE, 2008: 578-583.
  • 5CHWA D, JUNI-IO K, JIN Y C. Online trajectory planning of robot arms for interception of fast maneuvering object under torque and velocity constraints[J]. IEEE Transaction~ on Systems, Man. and Cybernetics, 2005, 35(6): 831-843.
  • 6XU Chunquan, AIGUO M, MAKOTO S. Optimal trajectory generation for manipulator with strong nonlinear constraints and multiple boundaryconditions[C]//International Conference on Robotics and Biomimetics, August 22-26, 2004, Shenyang Institute of Automation, Shenyang. Washington DC: IEEE, 2004: 192-197.
  • 7张斌,方强,柯映林.大型刚体调姿系统最优时间轨迹规划[J].机械工程学报,2008,44(8):248-252. 被引量:42
  • 8HAMID R F, MEHRDAD F, MOOSA K. Time optimal trajectory tracking of redundant planar cable-suspended robots considering both tension and velocity constraints[J]. Journal of Dynamic Systems , Measurement, and Control, 2011, 133/011004.
  • 9徐海黎,解祥荣,庄健,王孙安.工业机器人的最优时间与最优能量轨迹规划[J].机械工程学报,2010,46(9):19-25. 被引量:140

二级参考文献20

  • 1尚伟伟,丛爽.提高控制精度的并联机构速度规划算法[J].中国科学技术大学学报,2006,36(8):822-827. 被引量:5
  • 2CHOI Y K, PARK J H, KIM H S, et al. Optimal trajectory planning and sliding mode control for robots using evolution strategy[J]. Robotica, 2000, 18(8): 423-428.
  • 3LIN C S, CHANG P R, LUH J Y S. Formulation and optimization of cubic polynomial joint trajectories for industrial robots[J]. IEEE Trans. Automat. Contr., 1983, 28(12): 1 066-1 074.
  • 4GASPARETTO A, ZANOTTO V. A technique for time-jerk optimal planning of robot trajectories[J]. Robotics and Computer-Integrated Manufacturing, 2008, 24 (6): 415-426.
  • 5SHILLER Z. Time-energy optimal control of articulated systems with geometric path constraints[J]. Trans. ASME J. Dynam. Syst. Meas. Control, 1996, 118: 139-143.
  • 6SARAMAGO S F P, STEFFEN V J R. Optimization of the trajectory planning of robot manipulators taking into account the dynamics of the system[J]. Mech. Math. Theory, 1998, 33(7): 883-894.
  • 7SARAMAGO S F P, STEFFEN V J R. Optimal trajectory planning of robot manipulators in the presence of moving obstacles[J]. Mech. Math. Theory, 2000, 35(8): 1 079-1 094.
  • 8CHETTIBI T, LEHTIHET H E, HADDAD M, et al. Minimum cost trajectory planning for industrial robots[J]. European Journal of Mechanics A/Solids, 2004, 23(3): 703-715.
  • 9LUO X, FAN X P, ZHANG H, et al. Integrated optimization of trajectory planning for robot manipulators based on intensified evolutionary programming[C]//Proc. International Conference on Robotics and Biomimetics, Shenyang, China. Los Angeles: IEEE, 2004: 546-551.
  • 10PIAZZI A, VISIOLI A. Global minimum-time trajectory planning of mechanical manipulators using interval analysis[J]. Int. J. Control, 1998, 71(4): 631-652.

共引文献168

同被引文献302

引证文献28

二级引证文献269

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部