期刊文献+

不同石化燃料燃烧烟尘的来源辨识 被引量:4

Source identification of combustion soot generated by different petroleum chemicals fuels
在线阅读 下载PDF
导出
摘要 利用固相微萃取-气质联用(SPME-GC-MS)技术,对汽油、柴油、聚苯乙烯、ABS 4种石化燃料进行燃烧烟尘的特征组分分析,对其特征组分谱图中的保留时间进行归纳总结。对获得的20×35的数学矩阵,进行了主成分分析,得到了3个主成分,其累计率达到了92%,表明主成分所组成的二维数学坐标以及三维坐标系能较好地将不同比例的烟尘进行分类。最后在主成分分析的基础上,应用高级模式识别方法系统聚类方法,以100%的精确度将四类不同来源的燃料烟尘归类分开。 The SPME-GC-MS method is applied to analyze the characteristic components of combustion soot generated by four kinds of petroleum chemicals fuels i. e. the gasoline, the diesel, the polystyrene and the ABS (acrylonitrile butadiene styrene). The spectrums of these four different combustion soot and the corresponding characteristic components are obtained by this method. Based on the retention time and the corresponding characteristic components summarized from the spectrums of the four kinds of combustion soot, a 20× 35 mathematic matrix is obtained. The PCA method is applied to analyze this matrix and in succession three main principal components are summarized, with the cumulative rate up to 92%, which indicates that the two or three dimensional coordinate system composed of the principal components is quite effective to classify the combustion soot of different fuels. Finally, based on the results of PCA, an advanced pattern recognition method i. e. the HCA is applied to classify the four types of combustion soot with 100% accuracy.
出处 《化工学报》 EI CAS CSCD 北大核心 2011年第12期3595-3600,共6页 CIESC Journal
基金 国家自然科学基金项目(50974110) 苏州市科技计划项目(SYJG0911) “十二五”科技支撑计划项目(2011BAK07B01-02)~~
关键词 石化燃料 聚苯乙烯 模式识别 燃烧烟尘 petroleum chemicals fuels polystyrene pattern recognition combustion soot
作者简介 支有冉(1984-),男,博士研究生。 联系人:宗若雯。
  • 相关文献

参考文献17

  • 1陈耕.落实科学发展观 为石油安全做出更大贡献[J].中国石油企业,2004(8):10-13. 被引量:1
  • 2宋晓勇.成都市“6·5”公交车放火案调查与分析[J].消防科学与技术,2009,28(9):698-702. 被引量:15
  • 3Fu Meng (傅梦). Build a reliable "firewall" for high-rise building-on fire-prevention of high-rise buildings from aspect of Shanghai Jiaozhou Road apartment fire [J]. Journal of Henan University of Urban Construction (河南城建学院学报), 2011, 20 (1): 18-24.
  • 4Sandercoek P M L, Du Pasquier E. Chemical fingerprinting of gasoline ( Ⅲ): Comparison of unevaporated and evaporated automotive gasoline samples [J ]. Forensic Science International, 2004, 140:43-59.
  • 5Tan Beijing, Hardy James K, Snavely Ralph E. Aceelerant classification by gas chromatography/mass spectrometry and multivariate pattern recognition [J]. Analytica Chimica Acta, 2000, 422:37-46.
  • 6Lavine B K, Brzozowski D, Moores A J, Davidson C E. Mayfield H T. Genetic algorithm for fuel spill identification [J]. Analytica Chimica Acta, 2001, 437:233-246.
  • 7Philip Doble, Mark Sandercock, Eric Du Pasquier, Peter Petocz, Claude Roux, Michael Dawson. Classification of premium and regular gasoline by gas chromatography/mass spectrometry, principal component analysis and artificial neural networks [ J ]. Forensic Science International, 2003, 132:26-39.
  • 8XU Lu(许禄). Methods of Chemometrics(化学计量学)[M], Beijing: Science Press,2004: 221-227
  • 9Zhang Xuegong(张学工),Bian Zhaoqi(边肇祺).Pattern Recognition(模式识别)[M].Beijing:Tsinghua University Press,2004.
  • 10姜安,彭江涛,彭思龙,魏纪平,李长文.酒香型光谱分析和模式识别计算分析[J].光谱学与光谱分析,2010,30(4):920-923. 被引量:7

二级参考文献24

共引文献59

同被引文献47

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部