摘要
The electrochemical behavior of the adenosine5diphosphate(ADP) was studied in 005 molL-1 MES buffer solution(pH 585) at mercury electrode. There are no reduction and oxidation waves for the adenosine5diphosphate in the range of -04-14 V(vs. Ag/AgCl). In a mixture solution of Eu3+ and ADP(Eu3+ADP=14), a reduction peak is obtained at -078 V. Comparing with the cyclic voltammograms of Eu3+ ions under the same experimental conditions, it is found that the complex of Eu3+ADP can be produced in above solutions between Eu3+ion and ADP. The complex is strongly adsorbed at mercury electrode and has the following electrode reaction mechanism: Eu3++ADPEu3+ADP+e-Eu2+-ADP.
The electrochemical behavior of the adenosine5diphosphate(ADP) was studied in 005 molL-1 MES buffer solution(pH 585) at mercury electrode. There are no reduction and oxidation waves for the adenosine5diphosphate in the range of -04-14 V(vs. Ag/AgCl). In a mixture solution of Eu3+ and ADP(Eu3+ADP=14), a reduction peak is obtained at -078 V. Comparing with the cyclic voltammograms of Eu3+ ions under the same experimental conditions, it is found that the complex of Eu3+ADP can be produced in above solutions between Eu3+ion and ADP. The complex is strongly adsorbed at mercury electrode and has the following electrode reaction mechanism: Eu3++ADPEu3+ADP+e-Eu2+-ADP.