期刊文献+

New Formulation for Arbitrary Cracks Problem and Its Stress Intensity Factor of Plane Elasticity 被引量:4

弹性曲线裂纹问题的新提法及其应力强度因子(英文)
在线阅读 下载PDF
导出
摘要 Aim The general arbitrary cracked problem in an elastic plane was discussed. Methods For the purpose of acquiring the solution of the problem, a new formulation on the problem was proposed. Compared with the classical plane elastic crack model, only the known conditions were revised in the new formulation, which are greatly convenient to solve the problem, and no other new condition was given. Results and Conclusion The general exact analytic solution is given here based on the formulation though the problem is very complicated. Furthermore, the stress intensity factors K Ⅰ, K Ⅱ of the problem are also given. 目的 讨论弹性平面中的一般裂纹问题. 方法 为了求得问题的解,给出了此类问题的一种新提法. 在新提法中,与经典的裂纹模型相比较,不需要增加已知条件,而只需做一些调整,这为此类复杂裂纹模型的求解带来了很大的方便. 结果与结论 以此新模型为前提,给出了此复杂问题的解析解,表达式不仅简单而且是精确的. 还给出了应力强度因子KⅠ、KⅡ的一般表达式.
出处 《Journal of Beijing Institute of Technology》 EI CAS 1999年第4期364-369,共6页 北京理工大学学报(英文版)
关键词 complex variable function method general curve cracks Riemann Hilbert boundary value problem closed form solution stress intensity factors 复变函数方法 一般曲线裂纹 RH边值问题 封闭形式解 应力强度因子
  • 相关文献

参考文献1

  • 1N. I. Ioakimidis,P. S. Theocaris. A system of curvilinear cracks in an isotropic elastic half-plane[J] 1979,International Journal of Fracture(4):299~309

同被引文献24

  • 1郑可.带裂缝的半平面弹性基本问题[J].应用数学,1994,7(2):174-179. 被引量:4
  • 2胡元太,赵兴华.沿抛物线分布的各向异性曲线裂纹问题[J].应用数学和力学,1995,16(2):107-115. 被引量:14
  • 3李成,郑艳萍,吴晓铃,孟令启.含裂纹复合材料板的应力计算[J].中国机械工程,2007,18(13):1601-1604. 被引量:3
  • 4王铎.断裂力学[M].哈尔滨:哈尔滨工业大学出版社,1989.248-249.
  • 5SMESTAD G, BIGNOZZI C, ARGAZZI R. Testing of dye-sensitized TiO2 solar-cells: experimental photocurrent output and conversion efficiencies [J]. Sol Energy Mater Sol Cells, 1994, 32: 259-272.
  • 6ITO S, MURAKAMI T N, COMTE P, et al. Fabrication of thin film dye sensitized solar ceils with solar to electric power conversion efficiency over 10% [J]. Thin Solid Films, 2008, 516: 4613-4619.
  • 7ZHANG X, CAO A, WEI B, et al. Rapid growth of well-aligned carbon nanotube arrays [J]. Chem Phys Lett, 2002, 362: 285-290.
  • 8SHOUSHAN F, MICHEAL G C, Nathan R F, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties [J]. Science, 1999, 283:512-514.
  • 9M1NG L, JOYCE P Y T, CHRIS B, et al. Dynamical observation of bamboo-like carbon nanotube growth [J]. Nano Lett, 2007, 7: 2234- 2238.
  • 10HELVEGL S, LOPEZ-CARTES C, SEHESTED J, et al. Atomic-scale imaging of carbon nanofibre growth [J]. Nature, 2004, 427: 426-429.

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部