期刊文献+

基于快速支持向量聚类和相似熵的多参雷达信号分选方法 被引量:27

Multi-parameter Radar Signal Sorting Method Based on Fast Support Vector Clustering and Similitude Entropy
在线阅读 下载PDF
导出
摘要 该文针对现有聚类算法在雷达信号分选应用中复杂度高,准确性低的问题,研究了一种基于锥面簇分配的支持向量聚类算法,该算法在数据空间进行簇分配,避免了特征空间中计算邻接矩阵带来的高复杂度问题。该文将此算法引入雷达信号分选中,并在此基础上对其进行改进,使改进后的算法能对异常值做进一步处理,以达到缩短消耗时间的同时提高正确率的目的。同时以信息熵的理论描述类内聚集度和类间分离度,应用相似熵指标验证分选效果的有效性。仿真结果表明,该方法在提高分选正确率的同时可以有效降低计算复杂度。 The radar signal sorting method based on traditional clustering algorithm takes on a high time complexity and has poor accuracy.Considering the issue,a new sorting method is researched based on Cone Cluster Labeling(CCL) method for Support Vector Clustering(SVC) algorithm.The CCL method labels cluster in data space,and therefore avoides the high complexity caused by the calculation of adjacency matrix in feature space.This method is introduced into the radar signal sorting and it is modified for lower complexity and high accuracy by handling the outliers.Meanwhile a new cluster validity index,Similitude Entropy(SE) index,is proposed which assesses the compactness and separation of clusters using information entropy theory.Experimental results show that the strategy can improve efficiency without sacrificing sorting accuracy.
出处 《电子与信息学报》 EI CSCD 北大核心 2011年第11期2735-2741,共7页 Journal of Electronics & Information Technology
基金 国防科技重点实验室基金(9140C610301080C6106)资助课题
关键词 雷达信号分选 支持向量聚类 锥面簇分配 相似熵指标 Radar signal sorting Support Vector Clustering(SVC) Cone Cluster Labeling(CCL) Similitude Entropy(SE) index
作者简介 通信作者:王世强wunsicon@l63.com 王世强:男,1982年生,博士生,研究方向为智能信息处理、雷达信号处理. 张登福:男,1968年生,教授,研究方向为图像与信息处理. 毕笃彦:男,1962年生,教授,研究方向为图像处理与模式识别.
  • 相关文献

参考文献20

  • 1Wiley R G. ELINT: The Interception and Analysis of Radar Signals [M]. Second Edition, Boston, MA: Artech House, 2006: 317-356.
  • 2刘旭波,司锡才.雷达信号分选实现的新方法[J].系统工程与电子技术,2010,32(1):53-56. 被引量:20
  • 3Wang Jun, Lei Peng, Yang Dong, et al.. A novel deinterleaving algorithm of radar pulse signal based on DSP [C]. IEEE International Symposium on Industrial Electronics (ISIE 2009), Seoul, Korea, July 5-8, 2009: 1899-1903.
  • 4韩俊,何明浩,朱振波,王杰.基于复杂度特征的未知雷达辐射源信号分选[J].电子与信息学报,2009,31(11):2552-2556. 被引量:45
  • 5Fan Fu-hua and Yin Xue-zhong. Improved method for deinterleaving radar pulse trains with stagger PRI from dense pulse series [C]. 2nd International Conference on Signal Processing Systems (ICSPS), Dalian, China, July 5-7, 2010: V3-250-V3-253,.
  • 6Wilkinson D R and Watson A. Use of metric techniques in ESM data processing [J]. IEE Proceedings, Part F: Radar and Signal Processing, 1985, 132(7): 121-125.
  • 7Hassan H E. A new algorithm for radar emitter recognition [C]. Proceedings of the 3rd International Symposium on Image and Signal Processing and Analysis, Rome, Italy, Sept. 18-20. 2003.2: 1097-1101.
  • 8王斌,陈秋华,王翠柏.基于聚类的跳频信号分选[J].北京邮电大学学报,2009,32(2):80-84. 被引量:14
  • 9Wang C D and Thompson J P. An adaptive data sorter based on probabilistic neural networks [C]. Proceedings of the IEEE National Aerospace and Electronics Conference, Dayton, Ohio, May 1991, 3: 1096-1102.
  • 10郭杰,陈军文.一种处理未知雷达信号的聚类分选方法[J].系统工程与电子技术,2006,28(6):853-856. 被引量:26

二级参考文献37

共引文献107

同被引文献218

引证文献27

二级引证文献135

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部