期刊文献+

中国省际碳排放极化格局研究 被引量:31

Polarization Pattern of Carbon Emission in China's Provinces
在线阅读 下载PDF
导出
摘要 温室气体减排是减缓气候变化的重要途径。由于资源、劳动力、资本和技术等要素的差异,我国社会经济发展不平衡,碳减排的潜力也各不同。文章在计算中国省际碳排放的基础上,运用基尼系数和空间自相关的方法,刻画了1990年到2007年中国省际碳排放时空分布格局和聚集程度,有利于设立合理的长期减排目标和战略,实现碳排放空间的公平分配,促进区域协调发展。研究表明,碳总量和碳强度都呈现正的空间自相关性,在局部空间上出现了高值的聚集现象。碳强度的极化现象比碳总量更加严重。文章最后根据区域经济发展,资源禀赋,碳排放聚集等,因地制宜地提出了碳排放区划方案。区划结果显示出资源丰裕程度与碳强度的关系,有利于实施差异化的减排战略,实现经济发展与碳排放脱钩。 The reduction of greenhouse gas emissions is an important aspect of climate change impacts mitigation. Due to the differentiation of natural and labor resources, capital and technology, China has experienced an imbalance in social and economic development, which means that carbon reduction potential differs among regions. This paper calculates total carbon emissions and carbon intensity in China. The Gini coefficient and spatial autocorrelation were utilized to analyze regional polarization and local cluster characteristics of carbon emissions in China during 1990 and 2007, with a view to promoting carbon reduction equality and coordinated regional development of a long-term carbon reduction goal. The result illustrated a positive spatial autocorrelation at the national level, and local carbon clusters were demonstrated, especially for carbon intensity. The regionalization results also showed a closed relationship with energy self-sufficient rate. We put forward a carbon emission proposal according to regional characteristics, resources and carbon cluster, along with a spatial differential strategy to achieve carbon reduction and decouple China's carbon emissions from economic growth.
出处 《中国人口·资源与环境》 CSSCI 北大核心 2011年第11期21-27,共7页 China Population,Resources and Environment
基金 国家自然科学基金项目(编号:41001098) 厦门市科技项目(编号:Y0G5831D30)
关键词 空间自相关 极化格局 碳聚集 碳排放区划 s spatial autoeorrelation polarization pattern carbon cluster carbon emission regionalization
作者简介 肖黎姗,硕士,主要研究方向为生态环境管理。通讯作者:王润,研究员,主要研究方向为气候变化适应性政策与对策。
  • 相关文献

参考文献21

二级参考文献260

共引文献3193

同被引文献625

引证文献31

二级引证文献343

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部