期刊文献+

茶叶上农药生物降解性的电性距离矢量预测 被引量:4

Biodegradability Prediction of Pesticides in Tea Plant Using Molecular Electronegativity Distance Vector
在线阅读 下载PDF
导出
摘要 为了建立茶叶上农药的生物降解性与分子电性距离矢量MK的定量构效关系模型(QSAR),揭示影响生物降解性的结构因素,运用分子MK关联11种农药(含拟除虫菊酯和有机磷农药)在茶叶上的生物降解半衰期t0.5,经逐步回归建立了最佳二元数学模型。传统的判定系数R2为0.954,逐一剔除法的交互验证系数Q2为0.923,证明该模型具有良好的稳健性及预测能力。根据进入该模型的2个电性距离矢量M10、M20可知,影响农药生物降解性的主要因素是分子的二维结构特征-CH3,-O-,-C-,P等结构碎片。以M10,M20为人工神经网络的输入层,设定2∶2∶1的网络结构,所建BP模型的传统相关系数R2为0.977。研究结果表明,电性距离矢量对部分农药生物降解性的表征是合理有效的。 In order to study the quantitative structure-activity relationship(QSAR)between biodegradability and molecular electronegativity distance vector MK of pesticides in tea plant,and analyze the decisive factors affecting the biodegradation half lives of pesticides,a two-variabe quantitative structure-biodegradability relationship(QSBR)model is established by applying the molecular electronegativity distance vector MK to simulate the biodegradation half lives t0.5 of 11 pesticides(such as pyrethroid and organophosphorus compounds)in tea plant.The traditional correlation coefficient R2 and the cross-validation correlation coefficient Q2 of leave-one-out are 0.954 and 0.923.The result demonstrates that the model is reliable and has good predictive ability.From the two parameters M10,M20 of the model,it can be seen that the 2D-molecular structure characteristics,such as-CH3,-O-,-C-,P,are the decisive factors affecting the half lives of the pesticides.The two structure parameters are used as the input neurons of artificial neural network,and the 2∶2∶1 network architecture is employed.A satisfying model can be constructed with the back-propagation algorithm,and the correlation coefficient R2 is 0.977.The results show that MK has good rationality and efficiency for predicting the half lives of some pesticides.
作者 冯长君
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2011年第5期722-725,共4页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(21075138) 江苏省高校自然科学基金(08KJD610003) 贾汪科技局基金(XM10A05)
关键词 农药 生物降解 半衰期 电性距离矢量 多元回归分析 pesticides biodegradation half lives electronegativity distance vectors multivariate regression analysis
作者简介 作者简介:冯长君(1954-),男,教授,主要研究方向:物质构效学,E-mail:fengcj@xzit.edu.cn。
  • 相关文献

参考文献21

二级参考文献142

共引文献172

同被引文献51

  • 1赵筱萍,范骁辉,余杰,程翼宇.一类基于组效关系神经网络模型的中药药效预测方法[J].中国中药杂志,2004,29(11):1082-1085. 被引量:22
  • 2张婷,梁逸曾,赵晨曦,袁大林.基于分子结构预测气相色谱程序升温保留指数[J].分析化学,2006,34(11):1607-1610. 被引量:85
  • 3余陨金,卫亚东,万浪辉.碳链参数泵的从头计算[J].深圳大学学报(理工版),2007,24(3):313-316. 被引量:3
  • 4Williams D A, Lemke T L. Foye's Principles of Medicinal Chemistry[ M]. Beijing: China Medical Science Press, 2005 : 499.
  • 5唐敖庆 杨忠志.分子轨道理论.物理,1986,15(4):240-247.
  • 6Douglas M H, Subhash C B, Denise M. Assessing model fit by cross-validation[J]. Journal of Chemical Information and Computer Sciences, 2003, 43 (2) : 579-586.
  • 7Winkler D A, Burden F R. Holographic QSAR of benzodiazepines [ J ]. Quantitative Structure-Activity Relationships, 1998, 17(3) : 224 -231.
  • 8WEI Dong-bin, ZHANG Ai-qian, WU Chun-de, et al. Progressive study and robustness test of QSAR model based on quantum chemical parameters for predicting BCF of selected poly-chlorinated organic compounds [ J ]. Chemosphere, 2001, 44(6) : 1421-1428.
  • 9Sung S S, Karplus M. A comparative study of ligand-receptor complex binding affinity prediction methods based on glycogen phosphorylase inhibitors [ J ]. Journal of Computer-Aided Molecular Design, 1999,13 : 243-258.
  • 10Shu--Shen Liu, Chun--Sheng Yin, Zhi--Liang Li, et al. QSAR study of steroid benchmark and dipeptides based on MEDV--13[J].J. chem. inf. comput, sci., 2001, 41: 321--329.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部