摘要
对双解析函数的Hilbert边值问题中的系数G(t)及g1(t),g2(t)放宽了条件,不要求它们在光滑闭曲线L上连续,只要求它们在L上具有有限个第一类间断点.提出了双解析函数具有间断系数的Hilbert边值问题的概念,然后讨论了该问题的解法并且给出了解的具体表达式,得到了可解性定理.
We liberalize the condition that the coefficients G(t),g1(t) and g2(t) in the boundary value problem with the bianalytic function Hilbert.So we do not need them to be continuous in the smooth closed curve L.They are only required to have finite type 1 discontinuous points to satisfy the Hlder condition in the curve L.The notion of the boundary value problem with the bianalytic function possessing discontinuous coefficient Hilbert is raised.The method of solving this boundary problem is discussed,then the expression of the solution and theorem of its solvability are obtained.
出处
《平顶山学院学报》
2011年第5期6-10,共5页
Journal of Pingdingshan University
作者简介
胡琳(1980-),女,河南省漯河市人,平顶山学院数学与信息科学学院讲师,硕士,主要研究方向:解析函数边值问题.