期刊文献+

关于预定曲率方程的解曲面的凸性的一个注记

A Remark on the Convexity of Hypersurface with Prescribed Curvature Equations
在线阅读 下载PDF
导出
摘要 该文考虑如下预定曲率方程S_k(λ{h_(ij)})(X)=f(X),X∈M R^(n+1),应用Hamilton张量极大值原理证明了带边界情形下,如果M的第二基本形式h_(ij)半正定,则有解曲面M凸.从而,不难得到常平均曲率方程的解曲面凸. In this article, the author investigates the solution surface of the prescribed curvature equation Sk (λ{hij})(X)=f(X),VX∈M包含Rn+1 It is proved that the solution surfaceM of the prescribed curvature equation in Rn+l is convex under the condition that the second fundamental form hij of M is semi-positive definite on the boundary OM. The author makes use of Hamilton tensor maximum principle to prove this result. As a consequence, the convexity for the solution surface of constant mean curvature in Rn+l is easily obtained. Key words: Convexity; Curvature equation; Maximum principle
作者 徐金菊
出处 《数学物理学报(A辑)》 CSCD 北大核心 2011年第5期1176-1180,共5页 Acta Mathematica Scientia
基金 国家自然科学基金(10671186)资助
关键词 凸性 曲率方程 极大值原理. Convexity Curvature equation Maximum principle
  • 相关文献

参考文献1

二级参考文献18

  • 1Aeppli, A., On the uniqueness of compact solutions for certain elliptic differential equations, Proc. Amer.Math. Soc., 11, 1960, 832-836.
  • 2Alexandrov, A. D., Uniqueness theorems for surfaces in the large I, Vestnik Leningrad Univ., 11, 1956,5- 17 = Amer. Soc. Trans. Set. 2, 21, 1962, 341-354.
  • 3Bakelman, I. and Kantor, B., Existence of spherically homeomorphic hypersurfaces in Euclidean space with prescribed mean curvature, Geom. Topol., Leningrad, 1, 1974, 3 10,
  • 4Caffarelli, L. A. and Friedman, A., Convexity of solutions of some semilinear elliptic equations, Duke Math.J., 52, 1985, 431-455.
  • 5Caffarelli, L. A., Nirenberg, L. and Spruck, J., Nonlinear second order elliptic equations IV: Starshaped compact Weingarten hypersurfaces, Current Topics in Partial Differential Equations, Y. Ohya, K. Kasahara and N. Shimakura (eds.), Kinokunize, Tokyo, 1985, 1-26.
  • 6Chou (Tso), K. S., On the existence of convex hypersurfaces with prescribed mean curvature, Ann. Sc.Norm. Super. Pisa Cl. Sci. (4), 16, 1989, 225- 243.
  • 7Delanoe, P., Plongements radiaux S^n→R^n+1 a courbure de Gauss positive prescrite, Ann. Sci. Ecole Norm. Sup. (4), 18, 1985, 635-649.
  • 8Gerhardt, C., Closed Weingarten hypersurfaces in space forms, Geometric Analysis and the Calculus of Variation, F. Fort (ed.), International Press, Boston, 1996, 71-98.
  • 9Guan, B. and Guan, P., Convex Hypersurfaces of Prescribed Curvature, Ann. of Math., 156, 2002, 655-674.
  • 10Guan, P. and Lin, C. S., On the equation det(uij +δiju) = uPf(x) on Sn, NCTS in Tsing-Hua University,2000, preprint.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部