摘要
云模型是用语言值表示的定性概念与其定量表示之间的不确定性转换模型,逆向云发生器可以实现定量数值到定性语言值的转换.在深入分析传统逆向云算法的基础上,在"所有的模糊隶属函数曲线构成一个模糊隶属函数曲线簇,模糊隶属函数曲线簇可以看作云的一个近似"这一思想的启发下,提出了一种新的逆向云算法.与传统的逆向云算法不同,该算法能够处理代表某一定性概念的区间数并能避免参数求取过程中的重复计算.实验分析表明:该算法可以以较高的精度还原云模型的三个数字特征值,具有较高的实用性.
Cloud model is an effective tool in uncertain transforming between qualitative concepts and their quantitative expressions.Backward cloud generator can transform quantitative values into qualitative concepts.In this paper,a new algorithm of backward cloud was given after deeply analyzing the traditional algorithms of backward cloud and in the inspiration of the idea that all fuzzy membership functions could form a curve cluster which could be regarded as an approximation to a cloud.Differently from the traditional algorithms,the new algorithm can process interval numbers and avoid repeated calculation in the process of parameter requested.The experimental analysis results show that this algorithm can get numerical characteristic values of cloud in high precision and has high practicality.
出处
《系统工程理论与实践》
EI
CSSCI
CSCD
北大核心
2011年第10期2021-2026,共6页
Systems Engineering-Theory & Practice
基金
山东省自然科学基金(ZR2009GQ016)
关键词
正态分布区间数
逆向云发生器
模糊隶属函数曲线簇
normal interval number
backward cloud generator
the cluster of fuzzy membership functions
作者简介
作者简介:于少伟(1981-),男,山东乳山人,讲师,在读博士,研究方向:智能交通控制技术;
史忠科(1956-),男,汉,教授,博士生导师,研究方向:非线性系统控制,大系统理论等.