期刊文献+

一种非均匀场景复合高斯杂波下的自适应检测器 被引量:5

An Adaptive Detector in Compound Gaussian Clutter of Nonhomogenous Environments
在线阅读 下载PDF
导出
摘要 该文考虑一种非均匀环境中,复合高斯杂波下的目标检测问题,即待检测单元杂波协方差矩阵与参考单元杂波协方差矩阵之间并不相等,且杂波数据满足复合高斯统计分布模型。利用已知的先验信息,选择合适的先验分布,基于贝叶斯方法,该文给出了杂波协方差矩阵的最小均方误差估计,并将其应用于正则化匹配滤波器检验。计算机仿真结果表明,采用该文提出的杂波协方差估计算法,能够在参考数据较少的情况下,获得较好的检测性能。 The adaptive detection of signal embedded in compound Gaussian clutter of nonhomogeneous environments, i.e., the training samples used for adaption do not share the same covariance matrix as the vector under test is considered in this paper, and the clutter can be modeled in terms of a compound Gaussian process. With known prior and some appropriate prior distribution, based on Bayesian framework, the minimum mean square error estimation of clutter covariance matrix is proposed, and the application to the adaptive normalized matched filter test is given. The results of computer simulation are presented to illustrate that the performance of the proposed detectors is better than conventional ones, especially in the present of a small number of training data.
作者 谢洪森 邹鲲
出处 《电子与信息学报》 EI CSCD 北大核心 2011年第10期2433-2437,共5页 Journal of Electronics & Information Technology
关键词 信号处理 自适应检测 复合高斯分布 非均匀场景 贝叶斯方法 协方差矩阵 Signal processing Adaptive detection Compound Gaussian distribution Nonhomogeneous environments Bayesian framework Covariance matrix
作者简介 谢洪森:男,1966年生,副教授、博士生,从事军事通信、导航系统理论、信息处理理论的研究. 邹鲲:男,1976年生,讲师,从事雷达信号处理、统计信号检测及其在雷达、导航方面的应用研究.通讯作者: 邹鲲 Email: zoukun2003@yahoo.com.cn
  • 相关文献

参考文献10

  • 1Kelly E J. An adaptive detection algorithm[J]. IEEE Transactions on Aerospace and Electronic System, 1986, 20(1): 115-127.
  • 2Conte E, Maio A D, and Galdi C. Statistical analysis of real clutter at different range resolution[J]. IEEE Transaction on Aerospace and Electronic System, 2004, 40(3): 903-918.
  • 3Moya J C, Menoyo J G, Campo A B D, et al.. Statistical analysis of a high resolution sea clutter database[J]. IEEE Transactions on Geoscienee and Remote Sensing, 2010, 48(4): 2024-2037.
  • 4Ward K D, Tough R J A, and Watts S. Sea Clutter: Scattering, the K Distribution and Radar Performance[M]. London: The Institution of Engineering and Technology, 2006, Chapter 4.
  • 5Conte E, Lops M, and Ricci G. Asymptotically optimum radar detection in compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic System, 1995, 31(2): 617-625.
  • 6Maio A D, Farina A, and Foglia G. Knowledge-aided radar detector & their application to live data[J]. IEEE Transactions on Aerospace and Electronic System, 2010, 46(1): 170-183.
  • 7Bidon S, Besson O, and Toureret J Y. A Bayesian approach to adaptive detection in nonhomogeneous environments[J]. IEEE Transaction on Signal Processing, 2008, 56(1): 205-217.
  • 8Bandiera F, Besson O, and Ricci G. Knowledge-aided covariance matrix estimation and adaptive detection in compound Gaussian noise[J]. IEEE Transaction on Signal Processing, 2010, 58(10): 5391-5396.
  • 9Pascal F, Chitour Y, Ovarlez J P, et al.. Covariance structure maximum likelihood estimates in compound Gaussian noise: existence and algorithm analysis[J]. IEEE Transactions on Signal Processing, 2008, 56(1): 34-47.
  • 10Pacal F, Foster P, Ovarlez J P, et al.. Performance analysis of covariance matrix estimates in impulsive noise[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2206-2216.

同被引文献32

  • 1Gerlach K and Steiner M J. Adaptive detection of range distributed targets[J]. IEEE Transactions on Signal Processing, 1999, 47(7): 1844 1851.
  • 2Conte E, Maio A D, and Ricci G. GLRT-based adaptive detection algorithms for range-spread targets[J]. IEEE Transactions on Signal Processing, 2001, 49(7): 1336 1348.
  • 3He You, Jian Tao, Su Feng, et al.. Novel range-spread target detectors in non-Gaussian clutter[J]. IEEE Transactions on Aerospace and EleetT"oic Systems, 2010, 46(3): 1312-1328.
  • 4Bandiera F, Orlando D, and Ricci G. CFAR detection of extended and multiple point-like targets without assignment of secondary data[J]. IEEE Signal Processing Letters, 2006, 13(4): 240 243.
  • 5Jian Tao, He You, Su Feng, et al.. Adaptive detection o sparsely distributed target in non-Gaussian clutter radar[J].I I ETRadar, Sonar&Navigation, 2011,5(7):780-787. ].
  • 6Bandiera F, Besson O, and Ricci G. Adaptive detection of distributed targets in compound-Gaussian noise without secondary data: a Bayesian approach[J]. IEEE Transactios on Signal Processing, 2011, 59(12): 5698 5708.
  • 7Gini F and Rangaswamy M. Knowledge-based Radar Detection, Tracking, and Classification[M]. New York: John Wiley & Sons, 2008, Chapter 6.
  • 8Wu Y, Tang J, and Peng Y. On the essence of knowledge aided clutter covariance estimate and its convergence[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 569 585.
  • 9Besson O, Tourneret J Y, and Bidon S. Knowledge-aided Bayesian detection in heterogeneous environments[J]. IEEESignal Processing Letters, 2007, 14(5): 355-358.
  • 10Bidon S, Besson O, and Tourneret J Y. Knowledge-aided STAP in heterogeneous clutter using a hierarchical Bayesian algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(3): 1863-1879.

引证文献5

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部