期刊文献+

改进的向量质心模型在实时信息检索中的应用研究 被引量:2

ON APPLYING IMPROVED VECTOR CENTROID MODEL IN REAL-TIME INFORMATION RETRIEVAL
在线阅读 下载PDF
导出
摘要 将相关反馈技术应用于信息检索中可以学习和明确用户的信息需求,并对检索结果进行信息过滤,是提高信息检索效果的有效手段之一。除了准确率和召回率之外,过滤算法的适应性、速度也直接影响用户使用信息检索系统的体验。采用向量空间模型表示文档的内容预处理工作少,计算简单,适用于实时信息检索。结合偏差最小的基本原理,将改进的反馈文档向量的质心应用于信息重排。以重排的应用场景,在TREC Filtering Task数据集上进行仿真,并与基于关键词检索和类质心的检索方式进行了试验比较。 Applying relevant feedback technology to information retrieval is one of the effective means to improve the effect of information retrieval in which users' information demand can be learnt and determined and the retrieved results can conduct information filtration.Apart from the accuracy and recall,the adaptability and speed of filtration algorithm also impacts the experience of the user in employing the information retrieval system directly.The authors used vector space model to represent the content of document.it is less workload in pre-treatment and simple in computation and is adapted to real-time information retrieval.In combination of the rationale with least deviation,in the paper they apply the improved centroid of feedback document to information rearrangement.The simulation of the applying scene of rearrangement is executed on TREC Filtering Task dataset,and the test comparison is made between it with the keyword-based retrieval and the class-centroid based retrieval means.
出处 《计算机应用与软件》 CSCD 2011年第10期62-64,76,共4页 Computer Applications and Software
基金 国家高技术研究发展计划项目(2009AA044601)
关键词 信息检索 信息过滤 相关反馈 质心分类器 向量空间模型 Information retrieval Information filter Relevant feedback Centroid classifier Vector space model
作者简介 刘绍翰,博士,主研领域:算法,模式识别,信息检索。
  • 相关文献

参考文献23

  • 1Arevalilli-Herraez M, Ferri FJ, Domingo. JA naive relevance feedbackmodel for content-based image retrieval using multiple similarity meas- ures[J] . Pattern Recognition. 2010,43(3) :619 -629.
  • 2Schuemie M J, Kang N, Hekkelman ML, et al. GeneE : Gene and pro- tein query expansion with disambiguation [ J ] Bioinformatics, 2010, 26(1) :147 -148.
  • 3Farah M. Ordinal Regression Based Model for Personalized Information Retrieval[ J]. Adnances in information retrieval theory, 2009,15766 : 66 - 78.
  • 4Nanas N, DE Roeck A, Vavalis M. What Happened to Content-Based Infor- mation Filtering? [ C]//2nd International Conference on Theory of Information Retrieval, SEP 10 - 12, 2009. Cambridge ENGLAND. ADVANCES IN INFORMATION RETRIEVAL THEORY, 2009,5766:249- 256.
  • 5Zheng ZB, Ma H, Lyu Mr, et al. WSRec: A Collaborative Filtering Based Web Service Recommender System [ J]. 2009 IEEE Interationl Conference on Web Services, 2009,1 (2):437-444.
  • 6Drucker H, Shahrary B, Gibbon DC. Support vector machines: rele- vance feedback and information retrieval [ J ]. Infomation Processing and Management, 2002,38 ( 3 ) :305 - 323.
  • 7Chiong R, Theng LB. A hybrid naive Bayes approach for information filtering[ J] . ICIEA 2008: 3RD IEEE Conference on Industrial Elec- tronics and Applications Proceedings , 3 - 5 June, 2008, Singapore. 2008,1 ( 3 ) : 1003 - 1007.
  • 8Joaehims T. Text categorization with support vector machines : Learning with many relevant features [ C ]//Proceedings of the Tenth European Conference on Machine Learning, Chemnitz, G~rmhn),. Lectu~ Notes in Computer Science, Number 1398,1998 : 137 - 142.
  • 9Lewis D, Yang Y, Rose T, et al. RCV1 : A New Benchmark, Collec- tion for Text Categorization Research [ J]. Journal of Machine Learning Research, 2004,5:361 - 397.
  • 10Wamg X, Fang H, Zhai C. A study of methods for negative relevance feedback. Annual ACM Conference on Research and Development in Information Retrieval archive[ C]//Proceedings of the 31st annual in- temational ACM SIG1R conference on Research and development in in- formation retrieval , Singapore : 219 - 226.

二级参考文献27

  • 1H Y Tan. Chinese place automatic recognition research. In: C N Huang, Z D Dong, eds. Proc of Computational Language.Beijing: Tsinghua University Press, 1999
  • 2Zhang Huaping, Liu Qun, Zhang Hao, et al. Automatic recognition of Chinese unknown words recognition. First SIGHAN Workshop Attached with the 19th COLING, Taipei, 2002
  • 3S R Ye, T S Chua, J M Liu. An agent-based approach to Chinese named entity recognition. The 19th Int'l Conf on Computational Linguistics, Taipei, 2002
  • 4J Sun, J F Gao, L Zhang, et al. Chinese named entity identification using class-based language model. The 19th Int'l Conf on Computational Linguistics, Taipei, 2002
  • 5Lawrence R Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition. Proc of IEEE, 1989,77(2): 257~286
  • 6Shai Fine, Yoram Singer, Naftali Tishby. The hierarchical hidden Markov model: Analysis and applications. Machine Learning,1998, 32(1): 41~62
  • 7Richard Sproat, Thomas Emerson. The first international Chinese word segmentation bakeoff. The First SIGHAN Workshop Attached with the ACL2003, Sapporo, Japan, 2003. 133~143
  • 8J Hockenmaier, C Brew. Error-driven learning of Chinese word segmentation. In: J Guo, K T Lua, J Xu, eds. The 12th Pacific Conf on Language and Information, Singapore, 1998
  • 9Andi Wu, Zixin Jiang. Word segmentation in sentence analysis.1998 Int'l Conf on Chinese Information Processing, Beijing, 1998
  • 10D Palmer. A trainable rule-based algorithm for word segmentation. The 35th Annual Meeting of the Association for Computational Linguistics (ACL'97), Madrid, 1997

共引文献197

同被引文献22

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部