期刊文献+

基于Lagrange运动方程的悬臂梁的固有频率分析 被引量:6

Analysis on cantilever beam's natural frenquency based on Lagrange motion equation
在线阅读 下载PDF
导出
摘要 将悬臂梁的自由振动挠度函数假设为各阶振型函数与关于时间的广义坐标乘积的线性组合,推导得到了系统动能与弯曲变形能的级数形式的表达式。运用Lagrange运动方程得到了悬臂梁的前4阶固有频率方程及其解。并将计算结果与解析解进行了对比,分析了高阶固有频率误差值逐步增加的原因,提出了改进方法。研究表明,只要能够选取合适的振型函数,该方法对于不同边界条件的梁(柱)结构具有广泛的适应性,有着明显的理论意义和工程意义。 Under the assumming of the free vibration defection function of a cantilever beam being the linear combination of multiple vibration mode functions with universal coordinate product about the time,the series expression of the beam's kinetic energy and bending deformation energy is deduced and obtained.Using Lagrange motion equation,the frout four-order natural frequency equation of the beam is established and its solution is obeained.Furthermore,a comparison is made between above mentioned results and its analytic solution and then,the reasons coused the natural frequency error increasing is analyzed and improred inethod is put forword too.This method has a wide application to the beam structures with various boundary conditions if an appropriate vibration mode function is adoped and this research work has a great significance in theory as well as in engineering.
出处 《青海大学学报(自然科学版)》 2011年第1期12-15,共4页 Journal of Qinghai University(Natural Science)
关键词 悬臂梁 固有频率 假设振型法 Lagrange运动方程 cantilever beam natural frequency hypothetical modal method Lagrange motion equation
作者简介 黄永玉(1976一),男,青海大通人,副教授,兰州理工大学在读硕士研究生。研究方向:机械震动。
  • 相关文献

参考文献5

二级参考文献43

  • 1段秋华,楼梦麟.Timoshenko悬臂梁自由振动特性的近似分析方法[J].结构工程师,2004,20(5):20-23. 被引量:8
  • 2王东东,张灿辉,李庶林.Euler梁的无网格求解方法探讨[J].厦门大学学报(自然科学版),2006,45(2):206-210. 被引量:5
  • 3张元海,李乔.变截面梁的应力计算及其分布规律研究[J].工程力学,2007,24(3):78-82. 被引量:31
  • 4邓志恒,潘峰,潘志明.钢连梁控制结构地震反应弹塑性动力时程分析[J].广西大学学报(自然科学版),2007,32(2):163-166. 被引量:3
  • 5TIMOSHENKO S, YOUNG D H, WEAVER W. Vibration problems in engineering [M]. 4th edition, John Wiley & Sons, Inc. 1974.
  • 6VAN RENSBURG N F J, VAN DER MERWE A J. Natural frequencies and modes of a Timoshenko beam [J]. Wave Motion, 2006, 44: 58-69.
  • 7ROSSI R E, LAURA P A A, GUTIERREZ R H. A note on transverse vibrations of a Timoshenko beam of non uniform thickness clamped at one end and carrying a concentrated mass at the other [J]. Journal of Sound and Vibration, 1990, 143: 491-502.
  • 8EISENBERGER M. Derivation of shape functions for an exact 4-D. O. F. Timoshenko beam element [J]. Communications in Numerical Methods in Engineering, 1994, 10: 673-681.
  • 9EISENBERGER M. Dynamic stiffness matrix for variable cross-section Timoshenko beams[J]. Communications in Numerical Methods in Engineering, 1995, 11: 507-513.
  • 10GUTIERREZ R H, I,AURA P A A, ROSSI R E. Fundamental frequency of vibration of a Timoshenko beam of non-uniform thickness [J]. Journal of Sound and Vibration, 1991, 145:341- 344.

共引文献25

同被引文献47

引证文献6

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部