期刊文献+

机载相干MIMO雷达杂波自由度估计研究 被引量:6

Research on the Estimation of Clutter Rank for Coherent Airborne MIMO Radar
在线阅读 下载PDF
导出
摘要 针对任意发射波形合成结构影响下的机载相干MIMO雷达杂波自由度的估计问题。论文提出了一种机载相干MIMO雷达杂波自由度估计的构造法,该方法利用发射波形合成结构直接构造等效矩阵代替杂波协方差矩阵进行求秩。通过递推分解等效矩阵,提出并证明了一种杂波自由度快速估计准则,建立了机载相干MIMO雷达发射波形合成结构、阵列稀布构型与杂波自由度之间的定量关系。研究表明:该方法和准则能够准确预测任意发射波形合成结构下的机载MIMO雷达的杂波特征谱结构。该理论既保证了降秩STAP算法性能的最优又具有较小的计算量,并为最优发射波形合成方案和MIMO STAP算法的设计提供了依据。 This paper focuses on the problem of clutter rank estimation of coherent airborne MIMO radar with arbitrary transmitted waveform synthetic structures.A new construct method of clutter rank estimation for Multiple Input Multiple Output(MIMO) radar is presented.Clutter rank can be estimated by an equivalence matrix which is constructed by the waveform synthetic structures and sparse structure from the method,instead of the computation complicated direct decomposition of the Clutter Covariance Matrix(CCM).A simple and effective estimation rule of clutter rank is proposed and strict proofed based on the decomposition of the construct matrix.The quantitative relationship among the synthetic structures,sparse structure and Degree Of Freedom(DOF) of clutter is established,and the eigenspectrum structure of the clutter under arbitrary transmitted waveform synthetic structures can be obtained from the method and rule.Simulations also verify the accuracy of the method and rule.The proposed theory can be used to design an optimal synthetic structure and effective STAP algorithm.
出处 《电子与信息学报》 EI CSCD 北大核心 2011年第9期2125-2131,共7页 Journal of Electronics & Information Technology
基金 国家杰出青年科学基金(60925005) 国家自然科学基金(60736009 60901071)资助课题
关键词 MIMO雷达 杂波协方差矩阵 发射波形合成结构 杂波自由度 Multiple Input Multiple Output(MIMO) radar Clutter Covariance Matrix(CCM) Transmitted waveform synthetic structure Degree Of Freedom(DOF) of clutter
作者简介 通信作者:张西川xichuan102@163.com张西川:男,1984年生,博士生,研究方向为MIMO雷达技术、空时自适应信号处理. 张永顺:男,1961年生,教授,博士生导师,研究方向为MIMO雷达技术、自适应阵列处理. 谢文冲:男,1978年生,讲师,研究方向为空时自适应信号处理、自适应阵列处理.
  • 相关文献

参考文献11

  • 1Li J and Peter S. MIMO Radar Signal Processing[M]. Hoboken, New Jersey, John Wiley & Sons, Inc, 2009: 235-251.
  • 2Klemm R. Principles of Space-Time Adaptive Processing[M]. London, UK, IEE Radar, Sonar, Navigation and Avionics Series, 12, 2002: 95-98.
  • 3Zhang Q and Mikhae W B. Estimation of the clutter rank in the case of subarraying for space-time adaptive processin[J]. Electronics Letters, 1997, 33(5): 419-420.
  • 4Goodman N A and James M S. On clutter rank observed by arbitrary arrays[J]. IEEE Transactions on Signal Processing, 2007, 55(1): 178-186.
  • 5伍勇,汤俊,彭应宁.雷达系统杂波自由度研究[J].电子与信息学报,2008,30(5):1032-1036. 被引量:3
  • 6Chen C Y and Vaidyanathan P P. MIMO radar space-time adaptive processing using prolate spheroidal wave functions [J]. IEEE Transactions on Signal Processing, 2008, 56(2): 623-635.
  • 7Zhang, X C, Zhang Y S, Xie W C, et al.. Clutter characteristics analysis of airborne MIMO radar under the degradation of transmit waveforms orthogonality[C]. IEEE International Conference on Signal Processing, Robotics and Automation, Wuhan, China, May 10-11, 2010:617 621.
  • 8Fuhrmann D R, Browning J P, and Rangaswamy M. Signaling strategies for the hybrid MIMO phased-array radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(1): 66-78.
  • 9Wang G H and Lu Y L. Clutter rank of STAP in MIMO radar with waveform diversity[J]. IEEE Transactions on Signal Processing, 2010, 58(2): 938-943.
  • 10Li H B and Himed B. Transmit subaperturing for MIMO radars with co-located antennas[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(1): 55-65.

二级参考文献11

  • 1Guerci J R, Goldstein J S, and Reed I S. Optimal and adaptive reduced-rank STAP. IEEE Trans. on Aerospace and Electronic Systems, 2000, 36(2): 647-663.
  • 2Guerci J R. Space-Time Adaptive Processing for Radar. London: Artech house, 2003: 61-103.
  • 3Zatman M. Circular array STAP. IEEE Trans. on Aerospace and Electronic Systems, 2000, 36(2): 510-517.
  • 4Leatherwood D A and Melvin W L. Configuring a sparse aperture antenna for spaceborne MTI radar. Proceedings of IEEE Radar Conference 2003, Alabama, USA, May 2003: 130-146.
  • 5Goodman N A and Stiles J M. Resolution and synthetic aperture characterization of sparse radar arrays. IEEE Trans. on Aerospace and Electronic Systems, 2003, 39(3): 921-935.
  • 6Fertig L B. Estimation of space-time clutter rank for subarrayed data. Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, CA, USA, Nov. 2004: 289-292.
  • 7Slepian D and Pollak H O. Prolate spheroidal wave functions, Fourier analysis and uncertainty-Ⅰ. Bell System Technical Journal, 1961, 40(1): 43-63.
  • 8Slepian D. Prolate spheroidal wave functions, Fourier analysis and uncertainty-Ⅴ: the discrete case. Bell System Technical Journal, 1978, 57(5): 1371-1429.
  • 9Landau H J and Pollak H O. Prolate spheroidal wave functions, Fourier analysis and uncertainty-Ⅲ: the dimension of the space of essentially time- and band-limited signals. Bell System Technical Journal, 1964, 41(7): 1295-1336.
  • 10Wu Yong, Tang Jun, and Peng Yingning. Clutter rank of sparse linear array radar. Proceedings of 2006 CIE International Conference on Radar, Shanghai, China, Oct. 2006: 1149-1152.

共引文献2

同被引文献147

  • 1保铮,廖桂生,吴仁彪,张玉洪,王永良.相控阵机载雷达杂波抑制的时-空二维自适应滤波[J].电子学报,1993,21(9):1-7. 被引量:92
  • 2Guerci J R. Space-time Adaptive Processing for Radar[M]. Boston, MA: Artech House, 2003: 51-74.
  • 3Brennan L E and Staudaher F M. Subclutter visibility demonstration[R]. Technical Report RL-TR-92-21, Adaptive Sensors Inc, March 1992.
  • 4Zhang Q and Mikhael W B. Estimation of the clutter rank in the case of subarraying for space-time adaptive processing[J]. Electronics Letters, 1997, 33(5): 419-420.
  • 5Wang Guo-hua and Lu Yi-long. Clutter rank of STAP in MIMO radar with waveform diversity[J]. IEEE Transactions on Signal Processing, 2010, 58(2): 938-943.
  • 6Zhang Zeng-hui, Zhu Ju-bo, and Wang Yong-liang. Local degrees of freedom of clutter for airborne space-time adaptive processing radar with subarrays[J]. IET Radar, Sonar & Navigation, 2012, 6(3): 130-136.
  • 7Melvin W L and Davis M E. Adaptive cancellation method for geometry-induced non-stationary bistatic clutter environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2): 651-672.
  • 8Wu D, Zhu D, Shen M, et al.. Time-varying space-time autoregressive filtering algorithm for space-time adaptive processing[J]. IET Radar, Sonar & Navigation, 2012, 6(4): 213-221.
  • 9Cristallini D and Burger W. Strategies for sub-optimal air-to-air STAP in forward looking configuration[C]. Proceedings of the 7th European Radar Conference, Paris, France, 2010: 308-311.
  • 10Tseng C Y and Griffiths L J. A unified approach to the design of linear constraints in minimum variance adaptive beamformers[J]. IEEE Transactions on Antennas Propagation, 1992, 40(12): 1533-1542.

引证文献6

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部