期刊文献+

椭圆方程y^2=(x+p)(x^2+p^2)的整数解 被引量:3

The interger solutions of the elliptic equation y^2=(x+p)(x^2+p^2)
在线阅读 下载PDF
导出
摘要 设p是奇素数,运用初等方法刻画了椭圆Diophantine方程y2=(x+p)(x2+p2)的全部整数解(x,y).证明当p≡7(mod8)时,该方程至多有2组整数解(x,y),满足y>0. Let p be an odd prime,using some elementary methods,a complete description for all integer solutions(x,y) of the elliptic Diophantine equation y^2=(x+p)(x^2+p^2) is given,and it is proved that if p≡7(mod 8),then the equation has at most two integer solutions(x,y) with y0.
作者 王建华
出处 《西安工程大学学报》 CAS 2011年第3期410-414,共5页 Journal of Xi’an Polytechnic University
基金 国家自然科学基金资助项目(11071194)
关键词 椭圆曲线 三次DIOPHANTINE方程 整数解 上界 elliptic curve cubic Diophantine equation integer solutions upper bound
作者简介 通讯作者:王建华(1974-),男,陕西省铜川市人,铜川职业技术学院讲师,从事基础数学的教学与研究.
  • 相关文献

参考文献5

  • 1STROEKER R J, TOP J. On the equation Y^2 = (X+P) (X^2 +P^2) [J]. Rocky Mountain J Math,1994,24(3) :1 135-1 161.
  • 2De WEGER B M M. Solving elliptic Diophantine equations avoiding Thue equations and elliptie logarithms [ J ]. Exp Math, 1998,7(3) :243-256.
  • 3乐茂华.关于Pell数列的Ribenboim问题[J].数学进展,2002,31(6):510-516. 被引量:2
  • 4华罗庚.数论导引[M].北京:科学出版社,1979..
  • 5AKHTARI S ,OKAZAKI R. Quartie Thue equation [ J]. Journal Number Theory ,2010,130( 1 ) :40-60.

二级参考文献10

  • 1Cohn J H E. Squares in some recurrence sequences. Pacific J. Math., 1972, 41: 61-646.
  • 2Ribenboim P. The Fibonacci numbers and the Arctic Ocean. In: Symposia Gaussiana Conf. A, de Gruyter,1995, 41-83.
  • 3Ribenboim P, McDaniel W L. Square-classes of Lucas sequences. Portug. Math., 1991, 48:469-473.
  • 4Ljunggren W. Zur Theorie der Gleichung x2 + 1 = Dy4. Avh. Norske Vid. Akad. Oslo, 1942, 1: No.5.
  • 5Chen J-H, Voutier P M. Complete solution of the diophantine equation x2 + 1 = dy4 and a related family of quartic Thue equations. J. Number Theory, 1997, 62: 71-99.
  • 6Ljunggren W. Uber die Gleichung x4 - Dy2 = 1. Arch. Math. Naturv., 1942, 45: Nor.5.
  • 7Hyyro S. Uber die Gleichung axn - byn = z und das Catalansche Problem. Ann. Acad. Sci. Fennicae Ser.A, 1964, 1: 32.
  • 8Le Maohua. On the diophantine equation D1x4 - D2y2 = 1. Acta Arith., 1996, 76: 1-9.
  • 9Mordell L J. Diophantine Equations. London: Academic Press, 1968.
  • 10乐茂华.方程x^4-Dy^2=1有正整数解的充要条件[J].科学通报,1984,32(22):1407-1407. 被引量:11

共引文献224

同被引文献30

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部