期刊文献+

二次李超三系的分解定理

Decomposition Theorem of Quadratic Lie Supertriple Systems
在线阅读 下载PDF
导出
摘要 讨论了二次李超三系的唯一分解,得到了二次李超三系分解为非退化不可约阶化理想的分解定理. The decompositions of quadratic Lie supertriple systems are discussed.Moreover, the decomposition theorems of a quadratic Lie supertriple system into nondegenerate irreducible graded ideals are established.
出处 《数学年刊(A辑)》 CSCD 北大核心 2011年第4期467-472,共6页 Chinese Annals of Mathematics
关键词 李超三系 二次 分解 Lie supertriple system Quadratic Decomposition
作者简介 E-mail:nijunna@126.com E—mail:chenzhiqi@nanlcaj.edu.cn
  • 相关文献

参考文献1

二级参考文献14

  • 1Okubo S, Kamiya N. Quasiclassical Lie superalgebras and Lie supertriple systems. Comm Alg, 2002, 30(8): 3825 -3850
  • 2Okubo S, Kamiya N. Jordan-Lie superalgebra and Jordan-Lie triple system. J of Alg, 1997, 198:388 -411
  • 3Okubo S. Triple products and Yang-Baxter equation(II):orthogonal and sysplectic ternary systems. J Math Phys, 1993, 34:3293-3315
  • 4Okubo S. Parastatistic as Lie supertriple systems. J Math Phys, 1994, 35(6): 2785-2803
  • 5Zhang Zhixue, Shi Yiqian, Zhao Lina. Invariant symmetric bilinear forms on Lie triple systems. Comm Alg, 2002, 30(11): 5563-5573
  • 6Zhang Zhixue, Li Huajun, Dong Lei. Invariant bilinear forms on anti-Lie triple systems. Chinese Journal of Contemporary Mathematics, 2004, 25(3): 237-244
  • 7Kac V G. Lie superalgebras. Adv Math, 1977, 26:8-96
  • 8Benamor H, Benayadi S. Double extension of quadratic Lie superalgebras. Comm Alg, 1999, 27(1): 67 -88
  • 9Zhu Linsheng, Meng Daoji. The unique decomposition theorems of Lie superalgebras and quadratic Lie superalgebras. Science in China (Ser A), 2002, 32(3): 226-231 (in Chinese)
  • 10Bai Ruipu, Meng Daoji. The decomposition of n-Lie algebras and uniqueness. Chinese Journal of contemporary mathematics, 2004, 25(2): 117- 124

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部