期刊文献+

完备度量空间与紧度量空间上的不动点定理 被引量:2

Related Fixed Point Theorems on Complete and Compact Metric Spaces
在线阅读 下载PDF
导出
摘要 Fisher B证明了如下的不动点定理:设( X,d) 和( Y,ρ) 是完备的度量空间,T是X到Y的连续映射,S是Y到X的映射,并满足下列不等式,即对所有x,x′∈X,y,y′∈Y,0 ≤C≤1。d(STx,STx′) ≤Cmax{d(x,x′) ,d(x,STx),d(x′,STx′),ρ( Tx,Tx′)},ρ(TSy,TSy′) ≤Cmax{ρ(y,y′),ρ(y,TSy),ρ(y′,TSy′),d(Sy,Sy′)},则ST在X中有唯一不动点z,TS在Y中有唯一不动点w 。并且有Tz = w 和Sw = z。该文对此定理作一推广,从而得到了完备度量空间与紧度量空间上2 个新的不动点定理。 Fisher B proved the following fixed point theorem:Let (X,d) and (Y,ρ) be complete metric spaces,let T be a continuous mapping of X into Y and let S be a mapping of Y into X satisfying the inequalities  d (STx,STx′)≤C max { d (x,x′), d (x,STx), d (x′,STx′),ρ(Tx,Tx′)}ρ(TSy,TSy′)≤C max {ρ(y,y′),ρ(y,TSy),ρ(y′,TSy′),d(Sy,Sy′)} for all x,x′ in X and in Y,where 0≤C<1.Then ST has a unique fixed point z in X and TS has a unique fixed point w in Y.Further,Tz=w and Sw=z. This paper has generalized the result of this theorem and proved two new fixed point theorems on complete metric space and compact metric spaces.
作者 朱顺荣
出处 《南京理工大学学报》 EI CAS CSCD 1999年第4期366-369,共4页 Journal of Nanjing University of Science and Technology
关键词 不动点 度量空间 完备度量空间 紧度量空间 fixed points,metric spaces,complete metric spaces,compact metric spaces
  • 相关文献

同被引文献19

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部