摘要
Fisher B证明了如下的不动点定理:设( X,d) 和( Y,ρ) 是完备的度量空间,T是X到Y的连续映射,S是Y到X的映射,并满足下列不等式,即对所有x,x′∈X,y,y′∈Y,0 ≤C≤1。d(STx,STx′) ≤Cmax{d(x,x′) ,d(x,STx),d(x′,STx′),ρ( Tx,Tx′)},ρ(TSy,TSy′) ≤Cmax{ρ(y,y′),ρ(y,TSy),ρ(y′,TSy′),d(Sy,Sy′)},则ST在X中有唯一不动点z,TS在Y中有唯一不动点w 。并且有Tz = w 和Sw = z。该文对此定理作一推广,从而得到了完备度量空间与紧度量空间上2 个新的不动点定理。
Fisher B proved the following fixed point theorem:Let (X,d) and (Y,ρ) be complete metric spaces,let T be a continuous mapping of X into Y and let S be a mapping of Y into X satisfying the inequalities d (STx,STx′)≤C max { d (x,x′), d (x,STx), d (x′,STx′),ρ(Tx,Tx′)}ρ(TSy,TSy′)≤C max {ρ(y,y′),ρ(y,TSy),ρ(y′,TSy′),d(Sy,Sy′)} for all x,x′ in X and in Y,where 0≤C<1.Then ST has a unique fixed point z in X and TS has a unique fixed point w in Y.Further,Tz=w and Sw=z. This paper has generalized the result of this theorem and proved two new fixed point theorems on complete metric space and compact metric spaces.
出处
《南京理工大学学报》
EI
CAS
CSCD
1999年第4期366-369,共4页
Journal of Nanjing University of Science and Technology
关键词
不动点
度量空间
完备度量空间
紧度量空间
fixed points,metric spaces,complete metric spaces,compact metric spaces