期刊文献+

等式状态约束下的粒子滤波算法 被引量:3

Particle Filtering with Equality State Constraints
在线阅读 下载PDF
导出
摘要 针对具有等式状态约束的非线性高斯系统滤波问题,在粒子滤波过程中,通过投影方法将状态向量投影到状态约束子空间,利用拉格朗日乘子法求解修正后的状态向量。由于在粒子滤波算法中可以针对状态估计或者粒子集修正,因此,对应了两种能够处理等式状态约束的粒子滤波方法。新方法与常规粒子滤波算法相比滤波误差明显降低。仿真结果验证了新方法的有效性。 The paper aims at the problem of nonlinear Gaussian system filtering with state constraints.In particle filtering,state vector is projected to the state constrained subspace via projection method,and the modified state vector is evaluated using the Lagrange multiplier method.Because either state estimation or particles can be modified in the particle filtering,two new methods are given to deal with particle filtering with equality state constraints.The filtering errors of the new methods are lower than the that of general particle filter obviously.Simulation results verify the effectiveness of the new methods.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2011年第4期596-601,共6页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(60832005 60702061) 教育部长江学者和创新团队支持计划(IRT0645) 陕西省教育厅科研计划(2010JK565)
关键词 非线性滤波 粒子滤波 投影方法 状态约束 nonlinear filtering particle filter(PF) projection method state constraints
作者简介 陈金广(1977-),男。博士生。主要从事信息融合、目标跟踪方面的研究.
  • 相关文献

参考文献12

  • 1SIMON D. Kalman filtering with state constraints: a survey of linear and nonlinear algorithms[J]. IET Control Theory & Applications, 2010, 4(8): 1303-1318.
  • 2SIMON D. Optimal State Estimation[M]. New York: John Wiley & Sons, 2006: 218-222.
  • 3SIMON D, SIMON D L. Kalman filtering with inequality constraints for turbofan engine health estimation[J]. IEE Proceedings of Control Theory and Applications, 2006, 153(3): 371-378.
  • 4MICHALSKA H, MAYNE D. Moving horizon observers and observer based control[J]. IEEE Tram on Automatic Control, 1995, 40(6): 995-1006.
  • 5SIMON D, CHIA T. Kalman filtering with state equality constraints[J]. IEEE Tram on Aerospace and Electronic Systems, 2002, 38(1): 128-136.
  • 6GORDON N, SALMOND D, SMITH B A F. Novel approach to nonlinear/non-Ganssian Bayesian state estimation[J]. IEE Proceedings F: Radar Signal Process, 1993, 140(2): 107-113.
  • 7ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/ non-Gaussian Bayesian tracking[J]. IEEE Tram on Signal Processing, 2002, 50(2): 174-188.
  • 8CAPPE O, GODSILL S J, MOULINES E. An overview of existing methods and recent advances in sequential Monte Carlo[J]. Proceedings of the IEEE, 2007, 95(5): 899-924.
  • 9陈金广,李洁,高新波.一种迭代收缩非线性状态约束滤波算法[J].西安电子科技大学学报,2011,38(1):104-109. 被引量:8
  • 10YANG C, BLASCH E. Kalman filtering with nonlinear state constraints[Y]. IEEE Trans on Aerospace and Electronic Systems, 2009, 45(1): 70-83.

二级参考文献15

  • 1Simon D. Optimal State Estimation [ M]. New Jersey: Wiley-Interscience, 2006: 212-223.
  • 2Simon D. Kalman Filtering with State Constraints: a Survey of Linear and Nonlinear Algorithms [ J]. IET Control Theory Applications, 2010, 4(8) : 1303-1318.
  • 3Simon D, Simon D L. Kalman Filtering with Inequality Constraints for Turbofan Engine Health Estimation [ J]. IEE Proceedings of Control Theory and Applications, 2006, 153(3) : 371-378.
  • 4Michalska H, Mayne D O. Moving Horizon Observers and Observer Based Control [ J]. IEEE Trans on Automatic Control, 1995, 40(6) : 995-1006.
  • 5Simon D, Chia T L. Kalman Filtering with State Equality Constraints [ J]. IEEE Trans on Aerospace and Electronic Systems, 2002, 38(1) : 128-136.
  • 6Yang C, Blasch E. Kalman Filtering with Nonlinear State Constraints [ J]. IEEE Trans on Aerospace and Electronic Systems, 2009, 45(1) : 70-83.
  • 7De Geeter J, Van Brussel H, De Schutter J, et al. A Smoothly Constrained Kalman Filter [ J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(10): 1171-1177.
  • 8Julier S J, Uhlmann J K. A New Extension of the Kalman Filter to Nonlinear Systems [ C] //Proceedings of the llth Annual International Symposium Aerospace/Defense Sensing, Simulation and Controls. Orlando: SPIE, 1997: 182-193.
  • 9Julier S J, Uhlmann J K. Unscented Filtering and Nonlinear Estimation [ J]. Proceedings of the IEEE, 2004, 92(3) : 401-422.
  • 10Julier S J, Uhlmann J K, Durrant-Whyte H. A New Method for the Nonlinear Transformation of Means and Covarianees in Filters and Estimators [J]. IEEE Trans on Automatic Control, 2000, 45(3), 477-482.

共引文献7

同被引文献53

  • 1柴伟,孙先仿.非线性椭球集员滤波及其在故障诊断中的应用[J].航空学报,2007,28(4):948-952. 被引量:8
  • 2Sircoulomb V, Hoblos G, Chafouk H, et al. State estimation under nonlinear state inequality constraints [ C ]//A Tracking Ap- plication 16th Mediterranean Conference on Control and Automation Congress Centre, 2008 : 1 669 - 1 674.
  • 3Schweppe F C. Recursive state estimation : unknown but bounded errors and system inputs [ J ]. IEEE Transactions on Automatic Control, 1968, 13(1):22-28.
  • 4Glover J D, Schweppe F C. Control of linear dynamic systems with set constrained disturbances [ J ]. IEEE Transactions on Au- tomatic Control, 1971, 16(5) : 411 -423.
  • 5Schlaepfer F M, Schweppe F C. Continuous -time state estimation under disturbances bounded by convex sets [ J ]. IEEE Trans- actions on Automatic Control, 1972, 17 (2) : 197 - 205.
  • 6Witsenhansen H. Sets of possible state of linear systems given perturbed observations [ J ]. IEEE Transactions on Automatic Con- trol, 1968, 13(5): 556-558.
  • 7Fogel E. System identification via memebership set constraints with energy constrained noise [ J ]. IEEE Transactions on Auto- matic Control, 1979, 24(5): 752-758.
  • 8Yang F, Lee Y. Set - membership filtering for discrete - time systems with nonlinear equality constraints [ J ]. IEEE Transactions on Automatic Control, 2009, 54(10) : 2 480 - 2 486.
  • 9Fogel E, Huang Y F. On the value of information in system identification -bounded noise case[J]. Automatiea, 1982, 18 (2) : 229 -238.
  • 10Simon J J, Joseph J L. On Kalman filtering with nonlinear equality constraints [ J ]. IEEE Transactions on Signal Processing, 2007, 55(6): 2774-2784.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部