摘要
针对脑电(EEG)的非线性非平稳特性,提出了一种新的分析驾驶疲劳EEG信号的方法———希尔伯特-黄变换(HHT)。本文首先选择C4-导联的EEG信号,利用HHT方法分析其正常驾驶和疲劳驾驶时的数据,探索不同驾驶状态下的EEG特性;然后再选O2-导联的EEG信号进行对比分析,研究不同导联之间的差异。分析发现,不同驾驶状态下的EEG信号的希尔伯特边际谱差异明显,C4-导联与O2-导联在相同状态下的EEG特性也存在一定的差异。由此可见,HHT技术能够很好地区分驾驶员的不同状态,可以作为检测驾驶疲劳现象的新方法,同时导联的选择对驾驶疲劳的检测效果也存在一定的影响。
Based on the fact that the signals of electroencephalogram(EEG) possess non-linear and non-stationary properties,Hilbert-Huang Transform(HHT) was proposed for the EEG analysis of driving fatigue.Firstly,C4-lead EEG was selected,and the data of normal driving state and fatigue driving state was analyzed by HHT to explore the differences.Then O2-lead EEG was chosen for contrastive analysis of differences between the different leads.It was found through the analysis that the EEG signals had different Hilbert marginal spectrums for different states,and there were also some differences at the same state for the two leads.It can be certain that HHT can well distinguish different states of drivers as a novel approach for driving fatigue detection,and the selected lead may affect detectable results to some extent.
出处
《生物医学工程学杂志》
EI
CAS
CSCD
北大核心
2011年第4期653-657,共5页
Journal of Biomedical Engineering
基金
国家自然科学基金资助项目(60803088)
陕西省自然科学基础研究计划项目资助(2009JM8018)
陕西师范大学2010年研究生培养创新基金资助项目(2010CXS011)
陕西师范大学校级优秀预研项目资助(200802019)
关键词
脑电图
驾驶疲劳
希尔伯特-黄变换
希尔伯特边际谱
Electroencephalogram(EEG)
Driving fatigue
Hilbert-Huang Transform(HHT)
Hilbert marginal spectrum
作者简介
通讯作者。E-mail:a|msac@yahoo.com.cn