摘要
                
                    针对AdaBoost在使用Haar特征时的局限性,提出了Turbo-Boost算法.该算法经过两轮AdaBoost迭代,先从原始的Haar特征空间中筛选出F维主要特征子空间,再从中训练T>F个弱分类器,以进行最终的表情识别.在CAS-PEAL-R1表情库上的10折交叉验证结果表明,Turbo-Boost算法可显著提升识别性能,对微笑、皱眉、惊讶、张口和闭眼5类表情的总体识别准确率达到了93.6%.此外,该算法的识别速度快,可满足实时识别的需要.
                
                To overcome the limitation of AdaBoost algorithm on Haar-like features, Turbo-Boost algorithm is proposed in this paper. Our proposed algorithm has a 2-iteration AdaBoost training framework. In the first iteration, An F-dimension principal feature subspace is selected. In the second iteration, a strong classifier constructed of T〉F weak classifiers is trained in the F-dimension subspace. A 10 folds cross-validation on the CAS-PEAL-R1 facial expression database shows that Turbo-Boost outperforms AdaBoost significantly with a 93. 6% overall precision on 5 categories of facial expressions including smiling, frowning, surprising, mouse opening, and eyes closing. Furthermore, Turbo-Boost algorithm is fast and suitable for real time applications.
    
    
    
    
                出处
                
                    《计算机辅助设计与图形学学报》
                        
                                EI
                                CSCD
                                北大核心
                        
                    
                        2011年第8期1442-1446,1454,共6页
                    
                
                    Journal of Computer-Aided Design & Computer Graphics
     
            
                基金
                    国家242信息安全计划项目(2005C48)
            
    
    
    
                作者简介
erman@ieee.org,谢尔曼(1981一),男,博士研究生,主要研究方向为媒体计算.
罗森林(1968一),男,博士,教授,博士生导师,主要研究方向为信息安全、媒体计算、生物信息处理.
潘丽敏(1968一),女,硕士,工程师,主要研究方向为图像处理、信息安全.