期刊文献+

基于二代曲波变换的图像融合方法 被引量:1

Image Fusion Method Based on Second Generation Curvelet Transform
在线阅读 下载PDF
导出
摘要 提出了一种基于第二代曲波变换的图像融合方法。首先对源图像进行曲波变换,粗尺度系数采用加权平均的融合规则,细尺度系数采用基于区域标准差的融合规则,然后对细尺度系数进行一致性校验,最后进行图像重构得到融合图像。数值实验结果表明,该方法有效,性能优于基于小波变换的图像融合方法。 A method of image fusion based on the second generation curvelet transform is proposed.Firstly,the source images are decomposed by curvelet transform,then the coarse coefficients are fused with weighted mean fusion rule,and the detail coefficients are fused with fusion rule based on region standard deviation.Secondly,the coherence of the detailed coefficients is verified.Finally,the fused coefficients are reconstructed to obtain fusion image.The numerical experiment results show that the method is effective,and its capability is better than the image fusion method based on wavelet transform.
作者 黄昌军
出处 《现代电子技术》 2011年第15期94-96,共3页 Modern Electronics Technique
关键词 曲波 图像融合 小波 区域标准差 curvelet image fusion wavelet region standard deviation
作者简介 黄昌军 男,1972年出生,陕西黄陵人,讲师,高级程序员,在职研究生。主要研究方向为数字水印、图像处理等。
  • 相关文献

参考文献10

二级参考文献96

  • 1李晖晖,郭雷,刘航.基于二代curvelet变换的图像融合研究[J].光学学报,2006,26(5):657-662. 被引量:89
  • 2陈蜜,李德仁,秦前清,贾永红.基于Contourlet变换的遥感影像融合算法[J].小型微型计算机系统,2006,27(11):2052-2055. 被引量:20
  • 3杨镠,郭宝龙,倪伟.基于区域特性的Contourlet域多聚焦图像融合算法[J].西安交通大学学报,2007,41(4):448-452. 被引量:25
  • 4杨俊,赵忠明.基于Curvelet变换的多聚焦图像融合方法[J].光电工程,2007,34(6):67-71. 被引量:20
  • 5JAIN A K. Biometric recognition [J]. Nature, 2007, 449(9) :38-40.
  • 6LU J, PLATANIOTIS K N, VENETSANOPOULOS A N. Face recognition using kernel direct discriminant analysis algorithms[J]. IEEE Trans on Neural Net, 2003, 14(1): 117-126.
  • 7JING Xiaoyuan, YAO Yongfang, ZHANG David. Face and palmprint pixel level fusion and kernel DCVRBF classifier for small sample biometric recognition [J]. Pattern Recognition, 2007, 40(11): 3209-3224.
  • 8JAIN A K, NANDAKUMAR K, ROSS A. Score normalization in multimodal biometric systems [J]. Pattern Recognition, 2005, 38(12): 2270-2285.
  • 9YAO Yongfang, JING Xiaoyuan, WONG H S. Face and palmprint feature level fusion for single sample biometrics recognition[J]. Neurocomputing, 2007, 70 (5) : 1582-1586.
  • 10CANDES E J, DEMANET L, DONOHO D L, et al. Fast discrete curvelet transforms, DMS01-40698 [R]. Pasadena, CA, USA: California Institute of Technology, 2005:1-43.

共引文献27

同被引文献10

  • 1章毓晋.图像工程[M]2版.北京:清华大学出版社,2007282-288.
  • 2Candes E J. Ridgelets:theory and applications[D].[S.1.]:Department of Statistics,Stanford University,1998.
  • 3Candes E J. Monoscale ridgelets for the representation of images with edges[R].Stanford,CA:Department of Statistics,Stanford University,1999.
  • 4Donoho D L,Flesia A G. Digital ridgelet transform based on true ridge functions[A].Pittsburgh,PA,USA:Academic Press,2002.1-23.
  • 5Candes E J,Donoho D L. Curvelets-A surprisingly effective nonadaptive representation for objects with edges[A].Nashville,TN:Vanderbilt University Press,1999.105-120.
  • 6Candes E J,Donoho D L. New tight frames of curvelets and optimal representations of objects with C2 singularities[J].{H}Communications on Pure and Applied Mathematics,2004,(02):219-266.
  • 7Candes E J,Demanet L,Donoho D L. Fast discrete curvelet transforms[R].California,US:Applied and Computatinal Mathematics,California Institute of Technology,2005.
  • 8秦毅,王家序,毛永芳.基于软阈值和小波模极大值重构的信号降噪[J].振动.测试与诊断,2011,31(5):543-547. 被引量:30
  • 9盛惠兴,孟凡玲,李庆武,马国翠,曹晔锋.Curvelet变换域侧扫声纳图像增强算法[J].海洋测绘,2012,32(1):8-10. 被引量:6
  • 10施宇清.莫尔相移测偏技术中的计算机图像处理[J].振动.测试与诊断,2002,22(3):201-205. 被引量:4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部