期刊文献+

基于CMAC神经网络的电池荷电状态估计

Battery State of Charge Estimation Based on Cerebellar Model Articulation Controller Neural Network
在线阅读 下载PDF
导出
摘要 现有电池荷电状态(SOC)估计方法所需训练和学习时间较长,很难满足动力电池的实时性要求。为解决该问题,利用小脑模型关节控制器(CMAC)神经网络对电池SOC进行评估,CMAC神经网络具有学习算法简单和逼近任意非线性函数的能力。对镍氢电池的模拟测试结果表明,与反向传播神经网络相比,CMAC神经网络的学习和收敛速度较快,能实时估计出电池SOC,并使估计误差在可接受范围内。 Existing battery State of Charge(SOC) estimation methods are time consuming for the training and learning process, and it restricts the application in electrical vehicles. In order to resolve the problem, this paper uses Cerebellar Model Articulation Controller(CMAC) neural network to estimate SOC. The CMAC neural network has simpler learning algorithms and it has the ability of approximating arbitrary nonlinear functions. Experiment using the data of nickel hydride batteries demonstrate the better learning speed and convergence of CMAC method compared with Back Prooagation(BP) neural network, it can meet the real time requirement in SOC, and the estimation error of the CMAC is acceptable.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第14期200-201,204,共3页 Computer Engineering
基金 湖南省自然科学基金资助项目(09JJ5039)
关键词 小脑模型关节控制器 神经网络 电池荷电状态 嵌入式系统 Cerebellar Model Articulation Controller(CMAC) neural network battery State of Charge(SOC) embedded system
作者简介 汤哲(1977-),男,副教授,主研方向:智能控制,自动化控制;E-mail:tz@csu.edu.cn 刘万臣,硕士研究生; 郑果,工程师
  • 相关文献

参考文献6

  • 1Affanni A, Bellini A, Franceschini G, et al. Battery Choice andManagement for New Generation Electric Vehicle[J]. IEEE Transactions on Industrial Electronics, 2005, 52(5): 1343-1349.
  • 2Cheng Bo, Bai Zhifeng, Cao Binggang. State of Charge Estimation Based on Evolutionary Neural Network[J]. Energy Conversion andManagement, 2008, 49(10): 2788-2794.
  • 3Shen W X, Chan C C, Lo E W C, et al. Adaptive Neuro-fuzzy Modeling of Battery Residual Capacity for Electric VehiclesIndustrial Electronics[J]. IEEE Transactions on Industrial Electronics, 2002, 49(3): 677-684.
  • 4Singh P, Vinjamuri R, Wang Xiquan, et al. Fuzzy Logic Modeling of EIS Measurements on Lithium-ion Batteries[J]. Electrochimica Acta, 2006, 51(8/9): 1673-1679.
  • 5Singh P, Fennie C, Reisner J D. Fuzzy Logic Modeling of State of Charge and Available Capacity of Nickel/Metal Hydride Batteries[J]. Journal of Power Sources, 2004, 136(2): 322-333.
  • 6王哲,王希敏.并行DSP系统消息传递路由算法[J].计算机工程,2009,35(17):241-243. 被引量:2

二级参考文献5

  • 1余冬梅,张秋余,马少林,方霆.Dijkstra算法的优化[J].计算机工程,2004,30(22):145-146. 被引量:21
  • 2Kohout J, Alan D, George A. High-performance Communication Service for Parallel Computing on Distributed DSP Systems[J]. Parallel Computing, 2003, 29(7): 851-878.
  • 3Agbaria A, Kang D I, Singh K. LMPI: MPI for Heterogeneous Embedded Distributed Systems[C]//Proceedings of the 12th International Conference on Parallel and Distributed Systems. Minneapolis, USA: [s. n.], 2006.
  • 4Saha S, Bhattacharyya S S, Wolf W. A Communication Interface for Multiprocessor Signal Processing Systems[C]//Proceedings of the 2006 IEEE, ACM, IFIP Workshop on Embedded Systems for Real Time Multimedia, Seoul, Korea: [s. n.], 2006: 127-132.
  • 5高松,陆锋,段滢滢.一种基于双向搜索的K则最优路径算法[J].武汉大学学报(信息科学版),2008,33(4):418-421. 被引量:28

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部