期刊文献+

6阶KdV方程的精确解 被引量:1

Exact Solutions for Six-order KdV Equation
在线阅读 下载PDF
导出
摘要 借助于6阶KdV方程的分解式,运用最近提出的(G'/G)-展开法获得了6阶KdV方程的行波解,分别以含两个任意参数的双曲函数、三角函数及有理函数表示,并运用变换方程方法得到了该6阶KdV方程的多孤子解。结合解的图形对所获得的2-孤子解做了细致的分析,讨论了两个孤波的相互作用。 By means of the decomposition formula of the nonlinear six-order KdV equation and using the(G'/G)-expansion method proposed presently,travelling wave solutions of the six-order KdV equation are obtained.The solutions are expressed by hyperbolic functions,trigonometric functions and rational functions contained two arbitrary parameters.With the aid of the equation transformation method,multiple soliton solutions are also obtained.By the graphics of the solution,the two-soliton solution is analyzed in detail,and the interaction of two solitary waves is discussed.
出处 《河南科技大学学报(自然科学版)》 CAS 北大核心 2011年第4期83-86,112,共4页 Journal of Henan University of Science And Technology:Natural Science
基金 河南省国际合作交流基金项目(084300510060) 河南科技大学青年科研基金项目(2008QN026)
关键词 6阶KdV方程 位势KdV方程 (G'/G)-展开法 变换方程方法 孤子解 齐次平衡 Six-order KdV equation Potential KdV equation (G'/G)-expansion method Equation transformation method Soliton solution Homogeneous balance
作者简介 李灵晓(1976-),女,河南洛阳人,讲师,硕士,主要从事孤立子理论的研究.
  • 相关文献

参考文献9

  • 1Abdul M W. The Integrable KdV6 Equations: Multiple Soliton Solutions and Muhiple Singular Soliton Solutions[ J]. Appl Math and Comput,2008,204( 15 ) :963 - 972.
  • 2Karasu K A,Karasu A,Sakovich A,et al. A New Integrable Generalization of the Korteweg-de Vries Equation[ J ]. J Math Phys 12008,49 ( 7 ) : 1 - 10.
  • 3Kupershmidt B. KdV6 : an Integrable System [ J ]. Phys Lett A,2008,372 ( 15 ) :2634 - 2639.
  • 4Verhoeven C, Musette M. Soliton Solutions of Two Bidirectional Sixth-order Partial Differential Equations Belonging to the KP Hierarchy [ J ]. J Phys A :Math Gen,2003,36 : 133 - 134.
  • 5Cesar A, Gmez S, Salas H. The Cole-Hopf Transformation and Improved Tanh-coth Method Applied to New Integrable System ( KdV6 ) [ J]. Appl Math Comput,2008,204 ( 2 ) :957 - 962.
  • 6Wang M L, Zhang J L, Li X Z. The (G'/G)-expansion Method and Travelling Wave Solutions of Nonlinear Evolution Equations in Mathematical Physics[ J]. Phys Lett A ,2008,372(4) :417 - 423.
  • 7Li Lingxiao,Wang M ingliang. The(G'/G) -expansion Method and Travelling Wave Solutions for a Higher-order Nonlinear Schrodinger Equation [ J ]. Appl Math Comput, 2009,208 (2) :440 - 445.
  • 8李灵晓,李保安.利用推广的(G′/G)-展开法求解Kononpelchenko-Dubrovsky方程[J].河南科技大学学报(自然科学版),2009,30(1):75-77. 被引量:8
  • 9王明亮.非线性发展方程与孤立子[M].兰州:兰州大学出版社,1991.

二级参考文献9

  • 1Konopelchenko B G, Dubrovsky V G. Some New Integrable Nonlinear Evolution Equations in (2 + 1 ) Dimensions [ J ~. Physics Letters A, 1984,102 ( 1 - 2 ) : 15 - 17.
  • 2Xia T C,Lu Z S,Zhang H Q. Symbolic Computation and New Families of Exact Soliton-like Solutions of Konopelchenko- Dubrovsky Equations [ J ]. Chaos, Solitons & Fractals, 2004,20 ( 3 ) :561 - 566.
  • 3Wang D S, Zhang H Q. Further Improved F-expansion Method and New Exact Solutions of Konopelchenko-Dubrovsky Equation [ J ]. Chaos, Solitons & Fractals, 2005,25 ( 3 ) : 601 - 610.
  • 4Song L N, Zhang H Q. New Exact Solutions for the Konopelchenko-Dubrovsky Equation Using an Extended Riccati Equation Rational Expansion Method and Symbolic Computation [ J ]. Applied Mathematics and Computation, 2007,187 (2) :1373 - 1388.
  • 5Wazwaz A M. New Kinks and Solitons Solutions to the (2 + 1 )-dimensional Konopelchenko-Dubrovsky Equation [ J ]. Mathematical and Computer Modelling, 2007,45 ( 3 - 4 ) :473 - 49.
  • 6Ahmet Bekir. Application of the (G'/G)-expansion Method for Nonlinear Evolution Equations[ J ]. Phys Lett A ,2008,372 (19) :3400 - 3406.
  • 7Wang M L, Zhang J L, Li X Z. The ( G'/G)-expansion Method and Travelling Wave Solutions of Nonlinear Evolution Equations in Mathematical Physics [ J ]. Phys Lett A,2008,372 ( 4 ) :417 - 423.
  • 8Zhang S,Tong J L,Wang W. A Generalized (G'/G)-expansion Method for the mKdV Equation with Variable Coefficients [J]. Phys Lett A,2008,372(13) :2254 -2257.
  • 9Zhang J, Wei X L, Lu Y J. A Generalized (G'/G)-expansion Method and Its Applications [ J ]. Phys Lett A, 2008,372 (20) :3653 -3658.

共引文献7

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部