期刊文献+

HOSO+X(X=F,Cl,Br)的反应机理及电子密度拓扑分析 被引量:1

Mechanism and topological analysis of the electron density of HOSO+X(X=F, Cl, Br) reactions
原文传递
导出
摘要 在CCSD(T)/6-311++G(d,p)//MP2/6-311++G(d,p)水平上研究了HOSO+X(X=F,Cl,Br)的反应机理.优化得到了反应势能曲线上各驻点的几何构型,通过内禀反应坐标(IRC)确认了反应物、中间体、过渡态和产物的相关性.在CCSD(T)/6-311++G(d,p)水平上对计算得到的构型进行了能量校正.应用经典过渡态理论(TST)与变分过渡态理论(CVT),并结合小曲率隧道效应模型(SCT)校正的方法,计算了该反应在200~3000K温度范围内的速率常数kTST,kCVT和kCVT/SCT.计算结果表明:HOSO+X(X=F,Cl,Br)反应在单态和三态条件下均可发生,其中单态为主反应通道,HX+SO2为主产物.并利用电子密度拓扑分析方法研究了主反应通道化学键的变化. The reaction mechanisms of the reactions between HOSO and X(X=F, Cl, and Br) were investigated at the CCSD(T)/6-311++G(d, p)//MP2/6-311++G (d, p) level. The geometries of the reactants, transition states and the products were optimized at the MP2/ 6-311++G (d, p) level. The intrinsic reaction coordinates were traced according to Fukui’s theory and the relationships between the transition states, the reactants and the products confirmed. The single point energies of the species were corrected at the CCSD(T)/ 6-311++G(d, p) level. Reaction rate constants were calculated over a temperature range of 200–3000 K using classical transition state theory and canonical variational transition state theory combined with a small-curvature tunneling correction. The results show that the HOSO+X(X= F, Cl and Br) reaction could occur in the singlet and the triplet reaction channels. The singlet reaction channels are dominant and HX + SO2 are the main products. The formation and breaking of the chemical bond in the main reaction channel was analyzed by topological analysis of the electron density.
出处 《科学通报》 EI CAS CSCD 北大核心 2011年第19期1522-1529,共8页 Chinese Science Bulletin
基金 国家自然科学基金(20973053 20801017 21073051) 河北省自然科学基金(B2010000371 B2011205058) 河北省教育厅基金(2009137 ZD2010126) 河北师范大学基金(L2008B06 L2009Y06 L2010Y04)资助项目
关键词 HOSO 反应机理 速率常数 电子密度拓扑分析 HOSO reaction mechanism rate constant topological analysis of electron density
作者简介 联系人,E-mail:lixiaoyan326@163,com
  • 相关文献

参考文献17

  • 1Glarborg P, Kubel D, Chiang H M. Impact of SO2 and NO on CO oxidation under post-flame conditions. Int J Chem Kinet, 1996, 28: 773-790.
  • 2Lovejoy E R. Kinetic studies of the reactions of mercaptooxy with nitrogen dioxide, nitric oxide, and oxygen. J Phys Chem, 1987, 91: 5749-5755.
  • 3Frank A J, Sadflek M, Ferrier J G. Hydroxysulfinyl radical and sulfinic acid are stable species in the gas phase. J Am Chem Soc, 1996, 118:11321-11322.
  • 4Frank A J, Sadflek M, Ferrier J G. Sulfur oxyacids and radicals in the gas phase. A variable-time neutralization-photoexcitation-reionizationmass spectrometric and ab initio/RRKM study. J Am Chem Soc, 1997, 119:12343-12353.
  • 5Goumri A, Rocha J D R, Laakso D. Characterization of reaction pathways on the potential energy surfaces for H + SO2 and HS + 02. J Phys Chem A, 1999, 103:11328-11335.
  • 6Boyd R J, Gupta A, Langler R F. Sulfonyl radicals, sulfinic acid, and related species: An ab initio molecular orbital study. Can J Chem, 1980, 58:331-338.
  • 7Binns D, Marshall P. An ab initio study of the reaction of atomic hydrogen with sulfur dioxide. J Chem Phys, 1991, 95:4941-4947.
  • 8Zeist W J,Ren Y,Bickelhaupt F M.卤素及卤素离子的电子结构.中国化学,2010,53:210-215.
  • 9葛茂发,马春平.活性卤素化学[J].化学进展,2009,21(2):307-334. 被引量:10
  • 10Frisch M J, Head-Gordon M, Pople J A. A direct MP2 gradient method. Chem Phys Lett, 1990, 166:275-280.

二级参考文献311

共引文献9

同被引文献36

  • 1曹兆华,步宇翔,韩克利.非线形CS_2分子单重态和三重态的密度泛函理论[J].Chinese Journal of Chemical Physics,2004,17(4):415-420. 被引量:8
  • 2Mtilliken R S, Person W B. Molecular Complexes. New York: John Wiley & Sons, 1969.
  • 3Zhao G J, Han K L. Effects of hydrogen bonding on tuning photochemistry: Concerted hydrogen-bond strengthening and weakening. ChemPhysChem, 2008, 9:1842-1846.
  • 4Zhao G J, Plan K L. Site-specific solvation of the photoexcited protochlorophyllide a in methanol: Formation of the hydrogen-bonded in- termediate state induced by hydrogen-bond strengthening. Biophys J, 2008, 94:38-46.
  • 5Zhao G J, Han K L. Early time hydrogen-bonding dynamics of photoexcited coumarin 102 in hydrogen-donating solvents: Theoretical study. J Phys Chem A, 2007, 111 : 2469-2474.
  • 6Zhao G J, Liu J Y, Zhou L C, et al. Site-selective photoinduced electron transfer from alcoholic solvents to the chromophore facilitated by hydrogenbonding: A new fluorescence quenching mechanism. J Phys Chem B, 2007, 111:8940-8945.
  • 7Beck S M, Liverman M G, Monts D L, et al. Rotational analysis of the ^1B2u(ππ) ← 1A1g, (6^10) band of benzene and helium-benzene van der Waals complexes in a supersonic jet. J Chem Phys, 1979, 70:232-237.
  • 8Brupbacher T, Makarewicz J, Bauder A. Intermolecular dynamics of benzene-rare gas complexes as derived from microwave spectra. J Chem Phys, 1994, 101:9736-9746.
  • 9Neuhauser R, Braun J, Neusser H J, et al. Vibrational overtones in the electronic ground state of the benzene-Ar complex: A combined experimental and theoretical analysis. J Chem Phys, 1998, 108:8408-8417.
  • 10Klots T D, Emilsson T, Gutowsky H S. Rotational spectra, structure, Kr-83 nuclear quadrupole coupling constant, and the dipole moment of the Kr-benzene dimmer. J Chem Phys, 1992, 97:5335-5340.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部