期刊文献+

高砷难处理金精矿细菌氧化-氰化提金 被引量:33

Extraction of Au from high arsenic refractory gold concentrate by bacterial oxidation-cyanidation
在线阅读 下载PDF
导出
摘要 通过在高砷金精矿中配入不同比例的低砷碳酸盐型金精矿,使其所含硫、砷及铁等主要矿物成分含量发生变化,研究给矿中铁砷摩尔比对难处理高砷金精矿细菌氧化-氰化浸出效果的影响。结果表明:含砷金精矿中铁砷摩尔比直接影响细菌预氧化的效果,同时也影响细菌的活性和溶液中铁砷摩尔比的变化,给矿中铁砷摩尔比越高,溶液中的铁砷摩尔比也越高,且随着给矿中铁砷摩尔比的增加,溶液中铁砷摩尔比的变化幅度加大,给矿中铁砷摩尔比介于4.6~5.2之间,有利于细菌预氧化和氰化浸出,铁、砷氧化率分别由6.14%和7.38%提高到89.90%和93.60%,金、银浸出率分别由64.18%和35.93%提高到97.78%和88.83%,较好地改善细菌氧化效果,稳定和优化细菌预氧化过程。 Through blending low arsenic carbonate gold concentrate with different ratios into high arsenic-containing gold concentrate and changing the content of major ores,such as sulfur,arsenic and iron,the effect of iron-arsenic molar ratio on the bacteria oxidating-cyaniding extraction from high arsenic-containing refractory gold concentrate was investigated.The result shows that the iron-arsenic mole ratio of arsenic-containing gold concentrate has direct effect on the bacteria oxidation,bacteria activity and iron-arsenic molar ratio in solution.High iron-arsenic mole ratio in feeding results in high iron-arsenic ratio in solution.With iron-arsenic molar ratio increasing,the iron-arsenic ratio increases,and the frequency of change accelerates.The iron-arsenic ratio ranging from 4.6 to 5.2 is helpful to bacteria oxidizing-cyaniding extraction,the oxidation ratios of iron and arsenic increase to 89.90% and 93.60% from 6.14% and 7.38%,respectively.The extraction rate of gold and silver increase to 97.78% and 88.83% from 64.18% and 35.93%,respectively.Choosing appropriate iron-arsenic molar ratio can effectively improve the bacterial oxidation,stabilizes and optimize the process of bacterial pre-oxidation.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2011年第5期1151-1158,共8页 The Chinese Journal of Nonferrous Metals
基金 国家重点基础研究发展计划资助项目(2010CB630905)
关键词 高砷难处理金精矿 细菌氧化 氰化提金 high arsenic refractory gold concentrate bacterial oxidation cyaniding gold extraction
作者简介 通信作者:杨玮,高级工程师,博士;电话:13507710579;E-mail:ywmsco@126.com
  • 相关文献

参考文献21

  • 1FRASER K S, WALTON H, WELLS J A. Processing of refractory gold ore[J]. Minerals Engineering, 1991(4): 1029-1041.
  • 2杨洪英,范金,崔日成,巩恩普.难处理高砷金矿的细菌氧化-提金研究[J].贵金属,2009,30(3):1-3. 被引量:14
  • 3EHRLICH H L. Past, present and future of biohydrometalhrgy[J]. Hydrometallurgy, 2001, 59(2/3): 127-134.
  • 4AKCIL A. Potential bioleaching developments towards commercial reality: Turkish metal mining's future[J]. Minerals Engineering, 2004, 17(3): 477-480.
  • 5CABRAL T, IGNATIADIS I. Mechanistic study of the pyrite-solution interface during the oxidative bacterial dissolution of pyrite (FeS2) by using electrochemical techniques[J]. International Journal of Mineral Processing, 2001, 62(1/4): 41-64.
  • 6TIPRE D R, DAVE S R. Bioleaching process for Cu-Pb-Zn bulk concentrate at high pulp density[J]. Hydrometallurgy, 2004, 75: 37-43.
  • 7WATLING H R. The bioleaching of sulphide minerals with emphasis on copper sulphides--A review[J]. Hydrometallurgy, 2006, 84(1/2): 81-108.
  • 8杨丽丽,杨洪英,范有静,王大文,朱长亮,孙会兰.难处理金矿石细菌氧化的影响因素研究[J].贵金属,2007,28(1):58-62. 被引量:16
  • 9金世斌,马金瑞,郝福来.金精矿生物氧化过程中砷的氧化行为初探[J].黄金,2009(8):41-43. 被引量:6
  • 10杨洪英,杨立,魏绪钧.氧化亚铁硫杆菌(SH-T)氧化毒砂的机理[J].中国有色金属学报,2001,11(2):323-327. 被引量:28

二级参考文献112

共引文献104

同被引文献473

引证文献33

二级引证文献183

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部