期刊文献+

面向控制的分数阶微分模型的快速数值计算

Control-oriented fast numerical approaches of fractional-order models
在线阅读 下载PDF
导出
摘要 求解分数阶控制系统的关键在于如何快速精确地计算分数阶微分.针对短记忆法和变步长记忆法的计算精度和计算复杂性顾此失彼的矛盾,本文提出了一种恒权重记忆法,它不舍弃历史数据,而是采用常值权重后全部记忆.在每个后继的采样周期,只需把新的数据简单叠加到历史数据上来考虑,从而极大地提高了计算精度和降低了计算复杂性,且有效地化解了两者之间的矛盾.数值结果表明恒权重记忆法在分数阶控制系统设计中的可行性和优越性. In the computation of fractional order derivatives,the crucial point is to balance the computation speed and the computation accuracy.The existing short memory principle or variable memory principle helps little in relaxing the contradiction.To deal with this problem,we proposed an equal-weight memory principle,in which an equal-weight is applied to all past data in history,and the result is reserved instead of being discarded.In each subsequent sampling period,only one new data is collected for consideration with the historical data.Therefore,the computation accuracy is improved and the computation complexity is reduced,thus,the contradiction is effectively relaxed.Results in numerical examples demonstrate the feasibility and superiority in applying the proposed principle to the design of fractional-order control systems.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2011年第5期715-721,共7页 Control Theory & Applications
基金 国家"863"计划资助项目(2006AA05Z148) 国家自然科学基金资助项目(60804031) 华中科技大学自主创新研究基金资助项目(2010MS056)
关键词 分数阶微分 数字滤波器 短记忆法 变步长记忆法 恒权重记忆法 fractional-order derivatives digit filters short memory principle variable memory principle equal weight memory principle
作者简介 曹红亮(1982-),男,博士研究生,目前研究方向为燃料电池非线性复杂系统、分数阶系统建模与控制,E—mail:chlhzust@hotmail.com; 李曦(1977-),男,副教授,通讯作者,目前研究方向为非线性系统控制与诊断、分数阶控制器设计,E-mail:lixi@mail.hust.edu.cn; 邓忠华(1962-),男,教授,目前研究方向为分数阶控制、计算机网络控制,E-mail:zhonghua.deng@wh-hm.com; 秦忆(1945-),男,教授,目前研究方向为非线性控制系统理论及其应用,E-mail:qinyihust@126.com.
  • 相关文献

参考文献26

  • 1WOLFF I. A study of polarization capacity over a wide frequency band[J]. Physical Review, 1926, 27(6): 755 - 763.
  • 2BATES J, CHU Y. Electrode-electrolyte interface impedance: experi- ments and model[J]. Annals of Biomedical Engineering, 1992, 20(3): 349 - 362.
  • 3BENCHELLAL A, POINOT T, TRIGEASSOU J C. Approximation and identification of diffusive interfaces by fractional models[J]. Sig- nal Processing, Special Section: Fractional Calculus Applications in Signals and Systems, 2006, 86(10): 2712 - 2727.
  • 4SCHIESSEL H, METZLER R, BLUMEN A, et al. Generalized vis- coelastic models: their fractional equations with solutions[J]. Jour- nal of Physical A: Mathematical and General, 1995, 28(23): 6567 - 6584.
  • 5WESTERLUND S. Capacitor theory[J]. IEEE Transactions Di- electrics and Electrical Insulation. 1994, 1(5): 826 - 839.
  • 6CAO H L, LI X, DENG Z H, et al. Modeling for electrical characteris- tics of sofid oxide fuel cell based on fractional calculus[C]//2009 Chi- nese Control and Decision Conference. Guilin, China: IEEE, 2009: 319 - 322.
  • 7PETRAS I, VINAGRE B M. Practical application of digital fractional-order controller to temperature control[J]. Acta Montanis- tica Slovaca, 2002, 7(2): 131 - 137.
  • 8王振滨,曹广益,朱新坚.分数阶线性定常系统的稳定性及其判据[J].控制理论与应用,2004,21(6):922-926. 被引量:21
  • 9PODLUBNY I. Fractional-order systems and PIx DU-controllers[J]. IEEE Transactions Automatic Control, 1999, 44(1): 208 - 214.
  • 10MONJE C A, VINAGRE B M, FELIU V, et al. Tuning and auto - tun- ing of fractional order controllers for industry applications[J]. Control Engineering Practice, 2008, 16(7): 798 - 812.

二级参考文献47

共引文献262

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部