期刊文献+

求解QBF问题的启发式调查传播算法 被引量:11

Heuristic Survey Propagation Algorithm for Solving QBF Problem
在线阅读 下载PDF
导出
摘要 提出了一种启发式调查传播算法,并基于该算法设计了一种QBF(quantified Boolean formulae)求解器——HSPQBF(heuristic survey propagation algorithm for solving QBF)系统.它将Survey Propagation信息传递方法应用到QBF求解问题中.利用Survey Propagation作为启发式引导DPLL(Davis,Putnam,Logemann and Loveland)算法,选择合适的变量进行分支,从而可以减小搜索空间,并减少算法回退的次数.在分支处理过程中,HSPQBF系统结合了单元传播、冲突学习和满足蕴涵学习等一些优秀的QBF求解技术,从而能够提高QBF问题的求解效率.实验结果表明,HSPQBF无论在随机问题上还是在QBF标准测试问题上都有很好的表现,验证了调查传播技术在QBF问题求解中的实际价值. This paper presents a heuristic survey propagation algorithm for solving Quantified Boolean Formulae (QBF) problem. A QBF solver based on the algorithm is designed, namely HSPQBF (heuristic survey propagation algorithm for solving QBF). This solver is a QBF reasoning engine that incorporates Survey Propagation method for problem solving. Using the information obtained from the survey propagation procedure, HSPQBF can select a branch accurately. Furthermore, when handling the branches, HSPQBF uses efficient technology to solve QBF problems, such as unit propagation, conflict driven learning, and satisfiability directed at implication and learning. The experimental results also show that HSPQBF can solve both random and QBF benchmark problems efficiently, which validates the effect of using survey propagation in a QBF solving process.
出处 《软件学报》 EI CSCD 北大核心 2011年第7期1538-1550,共13页 Journal of Software
基金 国家自然科学基金(60773097 60803102)
关键词 人工智能 QBF问题 QBF问题求解器 因子图 调查传播 冲突学习 满足蕴涵学习 artificial intelligence quantified Boolean formulae problem QBF(quantified Boolean formulae)solver factor graph survey propagation conflict driven learning satisfiability directed implicationand learning
作者简介 殷明浩(1979-),男,安徽安庆人,博士,副教授,CCF会员,主要研究领域为智能规划,自动推理. 周俊萍(1981-),女,博士,主要研究领域为智能规划. 孙吉贵(1962--2008),男,博士,教授,博士生导师,CCF高级会员,主要研究领域为智能规划,自动推理. 谷文祥(1947-),男,教授,搏士生导师,主要研究领域为智能规划与规划识别,模糊数学及其应用.
  • 相关文献

参考文献10

  • 1Egly U,Eiter T,Tompits H,Woltran S.Solving advanced reasoning tasks using quantified Boolean formulas. Proc.of the 12th AAAI Conf.on Artificial Intelligence . 2000
  • 2Giunchiglia E,Narizzano M,Tacchella A.Quantified Boolean Formulas satisfiability library(QBFLIB). http://www.qbflib.org/ . 2001
  • 3Monasson R,Zecchina R,Kirkpatrick S,Selman B,Troyansky L.Determining computational complexity from characteristic’’phasetransitions’’. Nature . 1999
  • 4Gent I,Giunchiglia E,Narizzano M,Rowley A,Tachella A.Watched data structures for QBF solvers. Proc.of the 6th Int’’l Conf.on Theory and Applications of Satisfiability Testing . 2003
  • 5Cadoli M,Giovanardi A,Schaerf M.An algorithm to evaluate quantified Boolean formulae. Proc.of the AAAI Conf.on Artificial Intelligence . 1998
  • 6Rintanen J.Asymptotically optimal encodings of conformant planning in QBF. Proceedings of the22nd AAAI Confe-rence on Artificial Intelligence(AAAI-07) . 2007
  • 7Pan GQ,Vardi MY.Optimizing a BDD-based modal solver. Proc.of the 19th Int’’l Conf.on Automated Deduction . 2003
  • 8Gent Ian P,,Hoos Holger H,Rowley Andrew G D, et al.Using Stochastic Local Search to Solve Quantified Boolean Formulae. Proc. of the Principles and Practice of Constraint Programming . 2003
  • 9Garey MR,Johnson DS.Computers and Intractability: A Guide to the Theory of NP-Completeness. . 1979
  • 10M. Mezard,G. Parisi,R. Zecchina.Analytic and Algorithmic Solution of Random Satisfiability Problems. Science . 2002

同被引文献93

  • 1邵明,李光辉,李晓维.求解可满足问题的调查传播算法以及步长的影响规律[J].计算机学报,2005,28(5):849-855. 被引量:8
  • 2McDermott D. PDDL: The Planning Domain Definition Language: Version 1.2 [R]. New Haven: Yale Center for Computational Vision and Control, 1998.
  • 3Fox M, Long D. PDDL2. 1: An Extension to PDDL for Expressing Temporal Planning Domains [J]. J Artif Intell Res, 2003, 20(1): 61-124.
  • 4Gerevini A, Long D. Plan Constraints and Preferences in PDDL3 [R]. Brescia, Italy: Department of Electronics for Automation, University of Brescia, 2005.
  • 5Keyder K, Geffner H. Soft Goals Can Be Compiled Way [J]. J Artif Intell Res, 2009, 36(1): 547-556.
  • 6Hoffmann J. The Metric-FF Planning System: Translating "Ignoring Delete Lists" to Numeric State Variables [J]. J ArtiflntellRes, 2003, 20(1): 291-341.
  • 7Helmert M. The Fast Downward Planning System[J].J Artif Intell Res, 2006, 26(1) : 191-246.
  • 8Martin D, Alan F, Michael M. A probabilistie analysis of ran- domly generated binary constraint satisfaction[J]. Theory Com- puter Science, 2003,290 : 1815-1828.
  • 9Creignou N, Eaude H. The SAT-UNSAT transition for randomconstraint satisfaction problems [J]. Discrete Mathematics, 2009,309 : 2085-2099.
  • 10Martin O C, Monasson R, Zecchina R. Statistical mechanics methods and phase transitions in optimization[J]. Theory Com- puter Science, 2001,265 : 3-67.

引证文献11

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部