期刊文献+

基于遗传算法的RBF神经网络的优化与应用 被引量:3

RBF neural network's optimizing and using based on GA
在线阅读 下载PDF
导出
摘要 神经网络在处理现实问题时经常会遇到数据量大,网络结构复杂的问题,主要表现在各网络层之间权值的选取与量化和难以寻找到权值的最优解,对于RBF神经网络问题显得更为突出。针对上述问题,将遗传算法引入到RBF神经网络优化与应用当中进行论述,并将两者的结合运用于现实的问题处理当中。 neural network often encounters the difficulties of large quantity of data and the network structure is complex when deal with the practical question,it can be seen at weight number'selection and quantification and it is difficulty to find the optimal solution between network layers,it is more prominent to RBF neural network.So this essay combines the GA to RBFneural network to these prombles,and uses it in the practical question.
作者 徐杰
出处 《信息技术》 2011年第5期166-168,共3页 Information Technology
关键词 遗传算法 神经网络 搜索学习 GA neural network search study
作者简介 徐杰(1986-),男,在读硕士研究生,研究方向为人工智能,神经网络.
  • 相关文献

参考文献4

二级参考文献35

  • 1陶海平,杨翠娥,毕晓君.基于瞬时幅度与小波分析相结合的数字调制制式的自动识别[J].电讯技术,2005,45(4):48-50. 被引量:3
  • 2张鸣,韦惠民,闫红梅,张军.基于决策理论的数字调制信号识别[J].西安科技大学学报,2005,25(4):499-502. 被引量:9
  • 3叶健,葛临东,吴月娴.一种优化的RBF神经网络在调制识别中的应用[J].自动化学报,2007,33(6):652-654. 被引量:32
  • 4Chen S, Wang X X, Brown D J. Sparse incremental regression modeling using correlation criterion with boosting search. IEEE Signal Processing Letters, 2005, 12(3): 198-201.
  • 5Chen S, Wolfgang A, Harris C J, Hanzo L. Symmetric RBF classifier for nonlinear detection in multiple-antenna-aided systems. IEEE Transactions on Neural Networks, 2008, 19(5): 737-745.
  • 6Conzalez J, Rojas I, Ortega J, Pomares H, Fernandez F J, Diaz A F. Multi-objective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation. IEEE Transactions on Neural Networks, 2003, 14(6): 1478-1495.
  • 7Leung F H F, Lam H K, Ling S H, Tam P K S. Tuning of the structure and parameters of a neural network using an improved genetic algorithm. IEEE Transactions on Neural Networks, 2003, 14(1): 79-88.
  • 8Bors A G, Pitas I. Median radial basis function neural network. IEEE Transactions on Neural Networks, 1996, 7(6): 1351-1364.
  • 9Yin H, Allinson N M. Self-organizing mixture networks for probability density estimation. IEEE Transactions on Neural Networks, 2001, 12(2): 405-411.
  • 10Esposito A, Marinaro M, Oricchio D, Scarpetta S. Approximation of continuous and discontinuous mappings by a growing neural RBF-based algorithm. Neural Networks, 2000, 13(6): 651-665.

共引文献147

同被引文献16

  • 1周景文,徐建,陈守文,喻子牛.基于径向基神经网络和遗传算法的聚-γ-谷氨酸发酵培养基优化[J].食品科学,2006,27(10):288-292. 被引量:8
  • 2魏连伟.基于人工智能技术的地下水系统参数识别研究[D].天津:天津大学,2004:34-38.
  • 3Rajesh Bhosale, Rekha Singhal. Process optimization for the synthesis of octenyl succinyl derivative of waxy corn and amaranth starches[J]. Carbohydrate Polymers, 2007, (66): 521-527.
  • 4M. Segura-Campos, L. Chel-Guerrero, D. Betancur-Ancona.Synthesis and partial characterization of octenylsuccinic- starch from Phaseolus lunatus[J]. Food Hydrocolloids, 2008, (22): 1467-1474.
  • 5Yanjie Bai, Yong-Cheng Shi. Structure and preparation of octenyl succinic esters of granular starch,microporous starch and soluble mahodextrin[J]. Carbohydrate Polymers, 2011: (83): 520-527.
  • 6Xueyu Wang, Xiaoxi Li, Ling Chen, et al. Preparation and characterisation of octenyl succinate starch as a deliv- ery carrier for bioactive food components[J]. Food Chemistry, 2011, (126): 1218-1225.
  • 7李纳.基于广义回归神经网络与遗传算法的玻璃钢渔船船型要素优化[D].大连:大连理工大学,2011:9-17.
  • 8魏艳强,刘海琳,宁红云.基于RBF神经网络的公路货运量预测方法研究[J].天津理工大学学报,2008,24(1):17-20. 被引量:13
  • 9蚩志锋,闫珍珠,黄彪.基于遗传算法与BP算法的水质评价模型[J].重庆科技学院学报(自然科学版),2009,11(1):122-124. 被引量:8
  • 10刘志平,王汝凉,江桥辉,程慧,杨斌.基于遗传算法的RBF神经网络中心值优化研究[J].广西师范学院学报(自然科学版),2009,26(1):99-102. 被引量:7

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部