期刊文献+

结合商品标题和描述的在线评论特征词选择方法研究 被引量:4

The Online Comments Signature Words Selection with the Title and Description of Goods
原文传递
导出
摘要 目前,国内外对在线评论特征词的研究很少考虑到卖家发布的商品标题和描述信息,这使得数据挖掘过程盲目,挖掘结果准确率不高。采用聚类分析方法,把商品标题和描述考虑进来,搭建三层挖掘模型对在线评论进行研究和分析,提出定位L-K-中心点算法。实验结果证明,该方法能提高挖掘的准确率,减少挖掘时间。 At present, title and description of goods are rarely considered in the research of online reviews at home and abroad, this makes the mining process blindly and mining results are not high accurate. In this article, the authors use the cluster analysis method, consider the title and description, set up a three - level mining model to analyze the online comments, at the same time, a location - clustering - algorithm is proposed. Experimental results show that the method improves the accuracy of mining and reduces the mining time.
出处 《现代图书情报技术》 CSSCI 北大核心 2011年第5期49-54,共6页 New Technology of Library and Information Service
基金 国家自然科学基金项目"面向协同的制造企业知识建模与集成理论研究"(项目编号:70871034)的研究成果之一
关键词 聚类 特征词 定位 K-中心点算法 Cluster analysis Signature words Location K - center - algorithm
作者简介 E—mail:252884250@qq.com
  • 相关文献

参考文献8

  • 1Nicholls C, Song F. Comparison of Feature Selection Methods for Sentiment Analysis [ C ]. In : Proceedings of the Canadian Conference on Artificial Intelligence ,Advances in Artifwial Intelligence Lecture Notes in Computer Science. 2010:286-289.
  • 2Li Z, Zhang M, Ma S, et al. Automatic Extraction for Product Feature Words from Comments on the Web [ C ]. In : Proceedings of the 5th Asia Information Retrieval Symposium on Information Retrieval Technology. 2009 : 112 - 123.
  • 3杨云,吴亚男,李健.基于潜在特征词的文本相似度计算方法[J].计算机工程与设计,2011,32(2):572-575. 被引量:5
  • 4余传明.从用户评论中挖掘产品属性——基于SOM的实现[J].现代图书情报技术,2009(5):61-66. 被引量:20
  • 5钟敏娟,万常选,焦贤沛.基于聚类和词组抽取的XML查询扩展[J].情报学报,2010,29(4):597-604. 被引量:2
  • 6Kobayashi N, Inui K, Matsumoto Y, et al. Collecting Evaluative Expressions for Opinion Extraction [ C ]. In : Proceedings of the 1st Conference of International Joint Conference on Natural Language Processing. 2004 : 596 - 605.
  • 7姚天昉,程希文,徐飞玉,汉思·乌思克尔特,王睿.文本意见挖掘综述[J].中文信息学报,2008,22(3):71-80. 被引量:106
  • 8Han J, Kamber M. Date Mining: Concepts and Techniques [M].北京:机械工业出版,2001:234-235.

二级参考文献88

  • 1刘群,张华平,俞鸿魁,程学旗.基于层叠隐马模型的汉语词法分析[J].计算机研究与发展,2004,41(8):1421-1429. 被引量:199
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:328
  • 3娄德成,姚天昉.汉语句子语义极性分析和观点抽取方法的研究[J].计算机应用,2006,26(11):2622-2625. 被引量:64
  • 4徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:124
  • 5Somasundaran S,Ruppenhofer J,Wiebe J.Detecting Arguing and Sentiment in Meetings[C].In:Proceedings of Workshop on Discourse and Dialogue(SIGdial'2007),Antwerp,Belgium,September 2007:311 -319.
  • 6Yang C,Lin K,and Chen H H.Emotion Classification Using Web Blog Corpora[C].In:Proceedings of the 2007 IEEE/WIC/ACM International Conference on Web Intelligence(WI-IAT' 2007),Silicon Valley,U.S.A.2007:275 -279.
  • 7Fung G P,Yu J X,Lu H.The Predicting Power of Textual Information on Financial Markets[J].IEEE Intelligent Informatics Bulletin,2005,5(1):1 -10.
  • 8Zhuang L,et al.Movie Review Mining and Summarization[C].In:Proceedings of ACM International Conference on Information and Knowledge Management(CIKM'2006),Arlington,Virginia,U.S.A.2006:1-7.
  • 9Hu M,Liu B.Mining and Summarizing Customer Reviews[C].In:proceeding of the 10th Knowledge Discovery and Data Mining Conference(KDD'2004),Seattle,WA,U.S.A.2004:168-177.
  • 10Kim S.M,et al.Determining the Sentiment of Opinions[C].In:Proceedings of the 20th International Conference on Computational Linguistics,Geneva,Switzerland.2004:1-8.

共引文献128

同被引文献36

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部