期刊文献+

一种酚类抑制剂对亚硫酸镁氧化反应动力学的影响及作用机理

Mechanism and Effect of a Phenol Inhibitor on the Oxidation Kinetics of Magnesium Sulfite
原文传递
导出
摘要 亚硫酸镁的氧化是湿式镁法烟气脱硫过程中的重要步骤.通过实验筛选出一种新型酚类抑制剂(T),可显著延缓亚硫酸镁的氧化反应速率.在接近实际工况条件下,研究了抑制剂浓度、亚硫酸镁浓度、氧分压、pH、温度等条件对亚硫酸镁氧化速率的影响.结果表明,抑制剂T、溶解氧及亚硫酸镁的分级数分别为—0.25,0.5和0,反应的表观活化能为48.2kJ·mol-1.结合建立的三相反应模型,对T抑制条件下的总反应过程进行了推断,认为亚硫酸镁氧化的本征化学反应在贫氧区进行,而总反应速率受氧的传质扩散过程控制.与非抑制条件下的结果相比,T的存在降低了本征反应速率,进而使氧的传质速率减小.研究结果为利用抑制氧化手段实现脱硫副产物回收提供了有益参考. Magnesium sulfite oxidation is an important step in the wet magnesia flue gas desulphurizationprocess. In this paper, a novel phenol inhibitor, T, is selected by comparison experiments that could slow down the oxidation rate of magnesium sulfite greatly. Effects of inhibitor concentration, magnesium sulfite concentration, oxygen partial pressure, pH and temperature, on the oxidation rate were studied under the condition close to the practical. The results show that the reaction orders for inhibitor T, dissolved oxygen and magnesium sulfite are —0.25, 0.5 and 0, respectively. And the apparent activation energy is 48.2 kJ·mol-1. Integrated with the three-phase reaction model, the general reaction process was deduced. It is con-cluded that the intrinsic chemical reaction takes place in the poor oxygen zone and the general reaction rate is controlled by the oxygen diffusion. Compared with the results under the uninhibited conditions, the pres-ence of T delays the intrinsic reaction rate, resulting in the decrease of oxygen diffusion rate. Thus the result provides a useful reference for recycle of byproduct by inhibited oxidation in magnesia desulphurization.
出处 《化学学报》 SCIE CAS CSCD 北大核心 2011年第10期1160-1166,共7页 Acta Chimica Sinica
基金 国家863重点(No.2007AA061703) 教育部重点(No.109157) 中央高校基本科研业务费专项资金(No.10MG35)资助项目
关键词 酚类抑制剂 亚硫酸镁 氧化 动力学 脱硫 phenol inhibitor magnesium sulfite oxidation kinetics desulphurization
作者简介 E-mail:wld@tsinghua.edu.cn
  • 相关文献

参考文献24

  • 1邵全毅,冯丽萍.湿式镁法脱硫研究[J].天津化工,2008,22(4):43-45. 被引量:16
  • 2崔可,柴明,徐康富,马永亮.回收法氧化镁湿法烟气脱硫机理和工艺基础研究[J].环境科学,2006,27(5):846-849. 被引量:30
  • 3Wang, L. D.; Zhao, Y.; Li, Q. w.; Chen, Z. Y.; Liu, S. T.; Ma, Y. L.; Hao, J. M. Scientia Sin. Chim. 2009, 52(1), 109.
  • 4Karatza, D.; Prisciandaro, M.; Lancia, A.; Musmarra, D. Chem. Eng. J. 2008, 145, 285.
  • 5Shaikh, A. A.; Zaidi, S. M. J. React. Kinet. Catal. Lett. 1998, 64(2), 343.
  • 6Zhao, B.; Li, Y.; Tong, H. L.; Zhuo, Y. Q.; Zhang, L.; Shi, J.; Chen, C. H. Chem. Eng. Sci. 2005, 60(3), 863.
  • 7Tatani, A.; Imai, T.; Fujima, Y. J. Chem. Eng. Jpn. 2003, 36(9). 1057.
  • 8Ermakov, A. N.; Purmal, A. E Kinet. Catal. 2002, 43(2), 249.
  • 9Vorbach, M. Stud. Surf. Sci. Catal. 2001, 133, 575.
  • 10Kracker-Semler, G; Mart, R.; Siebenhofer, M. Chem. Eng. Technol. 2004, 27(6), 630.

二级参考文献56

共引文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部