期刊文献+

基于无奇异变换的双行轨道根数生成算法 被引量:5

Fitting algorithm of TLE parameters based on non-singular transformation
在线阅读 下载PDF
导出
摘要 在双行轨道根数(two-line elements,TLE)和简化普适摄动轨道预报模型的基础上,针对空间目标TLE采样拟合过程中可能出现奇点的问题,提出基于无奇异变换的空间目标TLE生成算法。引入无奇异轨道根数代替开普勒根数形成改进的TLE参数,推导了目标位置矢量对改进TLE参数的偏导数矩阵,并采用选主列Givens-QR分解算法进行观测方程迭代求解,以提高数值计算稳定性。仿真结果表明,该生成算法拟合精度和位置预报残差满足要求,可应用于低轨目标的空间监视。 After analyzing the space objects' two-line elements(TLE)and the simplified general perturbations 4(SGP4)orbit prediction model,the new TLE sampling fitting method is put forward due to the singularity existence in the iterative approximation procedure.The TLE fitting algorithm deduces the partial derivative matrix of satellite position vector with respect to modified TLE parameter based on the non-singular transformation and introduces the column pivot element Givens-QR decomposition algorithm to improve the efficiency of equation solution.Numerical simulations indicate that the method can enhance the TLE fitting precision and the accuracy of forecasting orbit,especially for the near-earth space object.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2011年第5期1104-1107,1123,共5页 Systems Engineering and Electronics
基金 国家高技术研究发展计划(863计划)(2007AA12Z308)资助课题
关键词 空间监视 双行轨道根数 无奇异变换 Givens-QR分解 space surveillance two-line element non-singular transformation Givens-QR decomposition
作者简介 刘光明(1979-),男,博士研究生,主要研究方向为飞行器建模、控制与仿真。E—mail:782522372@qq.com
  • 相关文献

参考文献17

  • 1Mark E D. Future space based radar technology needs for surveillance[C]//Proc, of the American Institute of Aeronautics and Astronautics/International Council of the Aeronautics Sciences International Air and Space Symposium and E:rposition , 2003 : 1 - 9.
  • 2Pedro R, Escobal. Methods of orbit determination[M].New York: Wiley, 1965.
  • 3Hoots F R, Roehrich R L. Models for propagation of the NORAD element sets[R]. Pesterson: Aerospace Defense Command, 1980.
  • 4Kelso T S. Validation of SGP4 and IS-GPS-200D against GPS precision ephemeredes[C]//Proc, of the American Astronautical Society/American Institute of Aeronautics and Astronautics Space Flight Mechanics Conference ,2007.
  • 5Byoung S L. NORAD TLE conversion from osculating orbital elements[J]. Journal of Astronomy and Space Sciences, 2002, 19(4) 395 - 402.
  • 6Oliver M, Eberhard G. Real-time estimation of SGP4 orbital elements from GPS navigation data[C]//Proc. of the International Symposium Space Flight Dynamics (A), 2000 : 6 - 30.
  • 7Dwight E A. Computing NORAD mean orbital elements from a state vector [ D]. Ohio: Air Force Institute of Technology, Wright Patterson Air Force Base, 1994.
  • 8Kozai Y, Kinoshita H. Effects of motion of the equatorial plane on the orbital elements of an earth satellite [J]. Celestial Mechanics and Dynamical Astronomy, 1973,7(3) : 356 - 366.
  • 9Brouwer D. Solution of the problem artificial satellite theory without drag[J]. Astronomical Journal, 1959,64 (9) 378 - 397.
  • 10Zhou Y F. A study for orbit representation and simplified orbit determination methods[D]. Brisbane: Queensland University of Technology, 2003.

二级参考文献7

共引文献17

同被引文献50

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部