期刊文献+

基于卷积粒子滤波的交互式多模型算法 被引量:5

Interacting multiple model algorithm based on convolution particle filter
在线阅读 下载PDF
导出
摘要 针对噪声分布未知环境下的非线性目标跟踪,提出了基于卷积粒子滤波的交互式多模型算法。该算法利用卷积粒子滤波器并行地运行多个模型,对前一时刻每个模型的状态后验概率密度进行交互,从交互后的概率密度中采样作为当前时刻滤波器的初始粒子,对当前时刻每个模型的状态后验概率密度进行加权作为系统输出。与基于粒子滤波的交互式多模型算法相比,算法消除了对量测噪声分布的依赖,提高了效费比,理论分析和仿真结果证明了该算法的有效性。 A new interacting multiple model algorithm based on the convolution particle filter is proposed for non-linear target tracking when the distribution of noise is unknown.The algorithm utilizes the convolution particle filter to run multiple models in parallel.The previous state posterior probabilities of all models interact each other.Samples from the interacted probability density are regarded as the current initial particles.The outputs of all parallel filters are weighted as system outputs.Compared with the interacting multiple model algorithm based on particle filter(IMM-PF),the new algorithm improves the effectiveness-cost ratio and eliminates the correlation between the algorithm and analytical probability distribution of measurement noises.The theoretical analysis and simulation results show the effectiveness of the proposed algorithm.
作者 孙杰 江朝抒
出处 《系统工程与电子技术》 EI CSCD 北大核心 2011年第5期992-995,共4页 Systems Engineering and Electronics
基金 国家自然科学基金(60736045 10776003)资助课题
关键词 机动目标跟踪 多模型算法 蒙特卡罗 粒子滤波 噪声分布 maneuvering target tracking multiple model algorithm Monte Carlo particle filter distribution of noise
作者简介 孙杰(1986-),男,硕士研究生,主要研究方向为机动目标跟踪。E—mail:sj—tbao@126.com
  • 相关文献

参考文献2

二级参考文献18

  • 1Bar-Shalom Y, Li X R. Multitarget-multisensor tracking: principles and techniques[M]. YBS Publishing, 1995.
  • 2Johnston L A. Krishnamurthy V. An improvement to the interacting multiple model (IMM) algorithm [J]. IEEE Trans. Signal Processingans, 2001, 49(12): 2909- 2923.
  • 3Kirubarajan T, Bar-Shalom Y. Kalman filter versus IMM estimator: whendo we need the latter? [J]. IEEE Tr. AES, 2003, 39(4): 1452- 1457.
  • 4Blom HAP, Bloem EA, Combining IMM and JPDA for tracking rultiple maneuvering targets in clutter[A]. Processing 5th int. Confe on Inf.Fusion, 2002[C]. Annatolis, MD, USA,2002,1: 705-712.
  • 5Bar-Shalom Y, Li X R. Multitarget-multisensor tracking: principles and techniques[M]. YBS Publishing, 1995.
  • 6Johnston L A. Krishnamurthy V. An improvement to the interacting multiple model (IMM) algorithm [J]. IEEE Trans. Signal Processingans, 2001, 49(12): 2909- 2923.
  • 7Kirubarajan T, Bar-Shalom Y. Kalman filter versus IMM estimator: whendo we need the latter? [J]. IEEE Tr. AES, 2003, 39(4): 1452- 1457.
  • 8Blom HAP, Bloem EA, Combining IMM and JPDA for tracking rultiple maneuvering targets in clutter[A]. Processing 5th int. Confe on Inf.Fusion, 2002[C]. Annatolis, MD, USA,2002,1: 705-712.
  • 9Bar-Shalom, Y,Li, X.R.Estimation and Tracking: Principles, Techniques, and Software[]..1993
  • 10Bar-Shalom, Y,Challa, S,Blom, H.A.P.IMM esti-mator versus optimal estimator for hybrid systems[].IEEE Trans on Aeros Electron Syst.2005

共引文献7

同被引文献57

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部