期刊文献+

三维双线性多分辨率形变模型研究

Research on 3D Bilinear Multidimensional Morphable Models
在线阅读 下载PDF
导出
摘要 形变模型在计算机视觉和计算机图形学等领域均有广泛的应用.但现有形变模型的建立或依赖于不稳定的人脸图像对应光流算法,或需要大量的人机交互,而且基于随机梯度下降算法的模型匹配过程常收敛于局部最优值.针对这些缺陷,提出三维双线性多分辨率形变模型.首先基于人脸关键特征分割和网格重采样建立原始人脸的自动稠密对应;然后经紧致凸松弛将模型匹配问题转化为两个双线性规划问题,最后通过基于内点方法的全局优化算法求解.基于模拟和真实数据的实验表明:该模型在最优性、模型匹配速度、收敛性和对噪声异常点的鲁棒性优于传统的形变模型. Morphable model has widespread applications in computer vision and computer graphics.The current model construction method either depends on the unstable optical flow algorithm or it requires lots of human-machine interactions.The model matching procedure based on stochastic gradient descent algorithm often gets stuck in the local optimum.In this paper,3D bilinear multidimensional morphable models are proposed.Firstly,dense correspondences between prototypic faces are constructed by face segmentation based on key feature and the mesh resampling.And then the model matching problem is converted into two bilinear programs after tight convex relaxations.Finally,the bilinear programs are efficiently solvable by modern interior point methods.Experiments with synthetic data and real image data validate that the 3D bilinear multidimensional morphable models outperform the morphable models in optimality,model matching speed,convergence rate and robustness to noise and outliers.
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第3期509-514,共6页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金项目(60873179) 深圳市科技计划基础研究项目(JC200903180630A) 高等学校博士学科点专项科研基金(20090121110032)
关键词 形变模型 稠密对应 三维人脸重建 双线性规划 morphable model dense correspondence 3D face reconstruction bilinear programming
作者简介 通信作者:szlig@xmu.edu.cn
  • 相关文献

参考文献14

  • 1Blanz V, Vetter T. A morphable model for the synthesis of 3D faces[C]//SIGGRAPH. New York: ACM Press/ Addison-Wesley Publishing Co, 1999 : 187-194.
  • 2Blanz V, Vetter T. Face recognition based on fitting a 3D morphable model[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2003,25 (9) : 1063-1074.
  • 3Romdhani S, Vetter T. Efficient, robust and accurate fitting of a 3D morphable model[C]//ICCV. Nice, France: IEEE Press, 2003.
  • 4胡永利,尹宝才,程世铨,谷春亮,刘文韬.创建中国人三维人脸库关键技术研究[J].计算机研究与发展,2005,42(4):622-628. 被引量:17
  • 5胡永利,尹宝才,谷春亮,程世铨.基于形变模型的三维人脸重建方法及其改进[J].计算机学报,2005,28(10):1671-1679. 被引量:34
  • 6Hartley R, Zisserman A. Multiple view geometry in compurer vision[M]. 2nd ed. Cambridge: Cambridge University Press, 2004.
  • 7Foley J D,van Dam A,Feiner S K,et al. Computer graphics: principles and practice[M]. 2nd ed. Boston, MA: Addison-Wesley, 1996.
  • 8Bascle B, Blake A. Separability of pose and expression in facial tracking and animation [C]//ICCV. Washington DC: IEEE Press, 1998:323-328.
  • 9Abboud B, Davoine F. Appearance factorization based facial expression recognition and synthesis [C]//ICPR. Washington DC: IEEE Computer Society, 2004 : 163-166.
  • 10Abboud B,Davoine F. Bilinear factorization for facial expression analysis and synthesis [J].Vision Image and Signal Processing,2005,152(3) :327-333.

二级参考文献38

  • 1M. Turk, A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991, 3(1): 71~86.
  • 2H. Rowley, S. Baluja, T. Kanade. Neural network-based face detection. IEEE Trans. Pattern Analysis and Machine Intelligence, 1998, 20(1): 23~38.
  • 3N. Bellhumer, J. Hespanha, D. Kriegman. Eigenfaces vs.fisherfaces: Recognition using class specific linear projection.IEEE Trans. Pattern Analysis and Machine Intelligence, Special Issue on Face Recognition, 1997, 17(7): 711~720.
  • 4P.J. Phillips, H. Moon, P. J. Rauss, et al. The FERET evaluation methodology for face recognition algorithms. IEEE Trans. Pattern Analysis and Machine Intelligence, 2000, 22(10): 1090~1104.
  • 5K. Messer, J. Matas, J. Kittler, et al. Xm2vtsdb: The extended m2vts database. In: Proc. the 2nd Int'l Conf. Audio and Video-based Biometric Person Authentication. Washington,D. C.: University of Maryland, 1999. 72~77.
  • 6M. Jun, Z. Hongming, W. Gao, et al. Face Tracker: A human face tracking and facial organ localizing system. In: Proc. the 8th Int'l Conf. Computer Vision. Vancouver, Canada: IEEE Computer Press, 2001. 743~743.
  • 7V. Blanz, T. Vetter. A morphable model for the synthesis of 3D faces. In: Proc. SIGGRAPH' 99. Los Angeles: ACM Press,1999. 187~ 194.
  • 8S. Romdhani, V. Blanz, T. Vetter. Face identification by fitting a 3D morphable model using linear shape and texture error functions. In: Proc. the 7th European Conf. Computer Vision.London: Springer-Verlag, 2002. 3~19.
  • 9B. Horn, B. G. Schunk. Determining optical flow. Artificial Intelligence, 1981, 17(1-3): 185~201.
  • 10B.G. Schunk. The image flow constraint equation. Computer Vision, Graphics and Image Processing, 1986, 35(1): 20~46.

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部