期刊文献+

非监督的高光谱混合像元非线性分解方法 被引量:12

Unsupervised nonlinear decomposing method of hyperspectral imagery
在线阅读 下载PDF
导出
摘要 在进行高光谱混合像元非线性分解应用中,提出一种非监督的高光谱混合像元非线性分解方法.通过核函数把原始高光谱数据映射到高维特征空间中,揭示数据之间的高阶性质.通过非线性映射,原始数据在高维特征空间中变得线性可分.在高维特征空间中运用线性的非负矩阵分解(NMF)算法进行光谱解混,挖掘出数据间更多的特征.解混结果以端元相关系数、光谱角距离、光谱信息散度和均方根误差作为质量评价指标.进行模拟数据仿真实验和真实高光谱遥感数据分解实验,结果表明,采用该算法得到的分解结果优于非负矩阵分解算法. An unsupervised nonlinear decomposing algorithm for hyperspectral imagery was introduced to solve the nonlinear decomposing problem of hyperspectral imagery. The original data were mapped into a high-dimensional feature space by a nonlinear mapping, which was associated with a kernel function. Then the higher order relationships between the data were exploited. The mapped data became linearly separable in the high-dimensional feature space by using an appropriate nonlinear mapping. Then a linear nonnegative matrix factorization (NMF) method can be applied to extract more useful features. gndmember correlation coefficient, spectral angle distance, spectral information divergence and root mean square error were used to estimate the quality of the results. The experimental results of synthetic mixtures and a real image scene demonstrated that the method outperformed the nonnegative matrix factorization approach.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第4期607-613,共7页 Journal of Zhejiang University:Engineering Science
基金 浙江省自然科学基金资助项目(Y1100196)
关键词 混合像元 核函数 光谱分解 非负矩阵分解(NMF) mixed pix kernel function spectral decomposing nonnegative matrix factorization (NMF)
作者简介 厉小润(1970-),男,浙江东阳人,副教授,从事模式识别和遥感图像分析的研究.E-mail:lxr@zju.edu.cn
  • 相关文献

参考文献14

  • 1陶雪涛,王斌,张立明.基于NMF的遥感图像混合像元分解新方法[J].信息与电子工程,2008,6(1):34-39. 被引量:5
  • 2KWON H, NASRABADI N M. Kernel orthogonal subspace projection for hyperspeetral signal classification [J]. Geoseience and Remote Sensing, 2005, 43 (12) : 2952 -2962.
  • 3SJOHN S T, NELLO C. Kernel methods for pattern analysis [M]. Beijing: China Machine Press, 2005: 15- 27.
  • 4吴波,张良培,李平湘.基于支撑向量回归的高光谱混合像元非线性分解[J].遥感学报,2006,10(3):312-318. 被引量:29
  • 5LEE D D, SEUNG H S. Algorithms for non-negative matrix factorization [J]. Advances in Neural Information Processing Systems, 2001, 3(13): 556- 562.
  • 6PAURA V P, PIPER J, PLEMMONS R J. Nonnegative matrix factorization for spectral data analysis [J].Linear Algebra Applications, 2006, 416(1) : 29 - 47.
  • 7TAO Xue-tao,WANG Bin, ZHANG Li-ming, et al. A new scheme for decomposition of mixed pixels based on nonnegative matrix factorization [C] // International Conference on Gcosciencc and Remote Sensing Symposium. Barcelona:IEEE, 2007: 1759- 1762.
  • 8MIAO L D, QI H R. Endmember extraction from highly mixed data using minimum volumn constrained nonnegative matrix factorization [J].IEEE Transactions on Geoscienee and Remote Sensing, 2007, 45 (3): 765 - 777.
  • 9ZHANG Dao-qiang, ZHOU Zhi-hua, CHEN Song can. Nonnegative matrix factorization on kernels [C]// 9th Pacific Rim International Conference on Artificial Intelligence. Guilin, China: [s. n. ], 2006 : 404 - 412.
  • 10United States Geological Survey Spectroscopy Lab [EB/OL]. [ 2009-08-20 ]. http://speclab usgs. gov.

二级参考文献23

  • 1[1]Chang C I.Hyperspectral Imaging:Techniques for Spectral Detection and Classification[M].New York:Kluwer Aca,2003.
  • 2[2]Boardman J.Automating spectral unmixing of AVIRIS data using convex geometry concepts[C]// in Summaries 4th Annu.PL Airborne Geoscience Workshop,1993:11-14.
  • 3[3]Ifarraguerri A,Chang C I.Multispectral and hyperspectral image analysis with convex cones[J].IEEE Trans.Geosci.Remote Sens.,1999,37(2):756-770.
  • 4[4]Winter M E.N-FINDR:An algorithm for fast autonomous spectral end-member determination in hyperspectral data[C]// Proc.SPIE Conf.Imaging Spectrometry V,1999:266-275.
  • 5[5]Mavrovouniotis M L,Harper A M,Ifarraguerri A.Classification of pyrolysis mass spectra of biological agents using convex cones[J].J.Chemometrics,1994,8(5):305-333.
  • 6[6]Nascimento J M P,Dias J M B.Vertex Component Analysis:A Fast Algorithm to Unmix Hyperspectral Data[J].IEEE Trans.Geosci.Remote Sensi.,2005,43(4):898-910.
  • 7[7]Chang C I,Wu Chao Cheng,Liu Wei min,et al.A New Growing Method for Simplex-Based Endmember Extraction Algorithm[J].IEEE Trans.Geosci.Remote Sens.,2006,44(10):2814-2819.
  • 8[8]Lee D D,Seung H S.Learning the parts of objects by non-negative matrix factorization[J].Nature,1999,401:788-791.
  • 9[9]Lee D D,Seung H S.Algorithms for non-negativematrix factorization[C]// Proceedings of Neural Information Processing Systems,2001,13:556-562.
  • 10Liu W G,Wu Elanie Y,Sucharita Gopal,et al.ART-MMAP:A Neural Network Approach to Subpixel Classification[J].IEEE Transactions on Geosciences and Remote Sensing,2004,42 (9):1976-1983.

共引文献31

同被引文献156

引证文献12

二级引证文献217

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部