期刊文献+

米曲霉发酵豆粕营养特性的研究 被引量:34

Evaluation of Nutritional Quality of Soybean Meals Fermented by Aspergillus oryzae
原文传递
导出
摘要 通过米曲霉对豆粕进行发酵,对发酵后豆粕的常规营养组成,粗蛋白质的组成、蛋白质的营养特性进行了分析,并将分析结果校正至发酵前的底物含量,探讨微生物发酵对豆粕中各营养组分的改造程度。结果表明:经检测,与未发酵豆粕相比,发酵豆粕中粗蛋白含量无显著变化,但其组成发生了改变,真蛋白质降低了19.19%(P<0.05),生成了2.02%的微生物蛋白,非蛋白氮水平增加了369.08%(P<0.05);发酵豆粕中大分子蛋白(>60 ku)和中分子蛋白(30~60 ku)被降解为小分子蛋白(<30 ku),有效消除了大豆抗原和抗营养因子。同时,发酵使豆粕中NDF、ADF和NFE的含量分别显著降低了16.77%(P<0.05)、12.57%(P<0.05)、22.25%(P<0.05),粗脂肪含量增加了179.25%;但豆粕发酵后底物重量、蛋白质和总能分别损失了5.14%、3.06%和3.86%。这表明米曲霉发酵过程中以损耗一部分碳水化合物和蛋白质作为代价,使豆粕本身蛋白质发生了一定程度的分解,从而获得了一种饲用特性更高的蛋白饲料。 This study evaluated the effect of fermentation of Aspergillus oryzae on the nutritional quality of soybean meals.Soybean meals were fermented by Aspergillus oryzae SICC 3.302 for 48 hours.After fermentation,their conventional nutritional contents,the composition of crude protein as well as the nutritional characteristics of protein were measured and corrected to the contents of nutrient on pre-fermentation base to compare with un-fermentation soybean meals.Results showed that the content of crude protein(CP) was un-changed,but the content of true protein(TP) reduced 19.19%(P0.05),and the level of non-protein nitrogen(NPN) increased nearly four-fold(P0.05),moreover,microbial protein was produced by 2.02% after fermentation.Fermentation increased the amount of small-size peptides(30ku)(P0.05) compared with un-fermentation soybean meals,while significantly decreasing large-size peptides(60ku)(P0.05) and medium-size peptides(30ku-60ku)(P0.05),and eliminating most of soybean antigens and anti-nutritional factors.Meanwhile,fermentation made the amount of NDF,ADF and NFE significantly decreased respectively by 16.77%(P0.05),12.57%(P0.05) and 22.25%(P0.05),while the content of crude fat increased 179.25%(P0.05).But fermentation made the amount of fermented substrate,protein and gross energy decreased 5.14%,3.06% and 3.86% respectively.These results indicated that fermentation could make protein in soybean meals to be degradated and become a more high-quality protein feed,with the cost of losing some carbohydrates and protein.
出处 《中国畜牧杂志》 CAS 北大核心 2011年第9期40-44,共5页 Chinese Journal of Animal Science
基金 教育部长江学者和创新团队发展计划(IRT0555) 四川农业大学双支计划资助
关键词 豆粕 米曲霉 固态发酵 营养特性 soybean meal Aspergillus oryzae solid-state fermentation nutritional quality
作者简介 陈中平(1982-),男,广安市人,硕士研究生 通讯作者
  • 相关文献

参考文献13

  • 1Li D F, Nelssen J L, Reddy P G, et al. Transient hypersensitivity to soybean meal in the early-weaned pig [J]. J Anim Sci, 1990, 68 (6): 1790-1799.
  • 2Hong K J, Lee C H, Kim S W. Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals[J]. J Med Food, 2004, 7(4): 430-435.
  • 3Refstie S, Sahlstrom S, Brathen E, et al. Lactic acid fermentation eliminates indigestible carbohydrates and antinutritional factors in soybean meal for Atlantic salmon (Salmo salar)[J]. Aquaculture, 2005. 246(1-4): 331-345.
  • 4张丽英.饲料分析及饲料质量检测技术[M].北京:中国农业大学出版社,2002.49-74.
  • 5Broderick G A, Kang J H. Automated simuhaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media[J]. J Dairy Sci, 1980, 63(1): 64-75.
  • 6Wang J, Wang J Q, Zhou H, et al. Effects of addition of previously fermented juice prepared from alfalfa on fermentation quality and protein degradation of alfalfa silage [J]. Anim Sci Technol, 2009, 151(3-4): 280-290.
  • 7Ride J P, Drysdale R B. A rapid method for the chemical estimation of filamentous fungi in plant tissue [J]. Physiol Plant Pat, 1972, 2(1): 7-15.
  • 8吴非,霍贵成.酶法钝化大豆胰蛋白酶抑制剂的研究[J].食品研究与开发,2002,23(6):26-28. 被引量:20
  • 9赵仁勇,毕艳兰,朱永义.糙米及其制品中植酸含量的测定方法[J].粮食与饲料工业,2002(1):44-45. 被引量:14
  • 10Feng J, Liu X, Xu Z R, et al. Effects of Aspergillus oryzae 3.042 fermented soybean meal on growth performance and plasma biochemieal parameters in broilers [J]. Anim Sei Technol, 2007, 134(3-4): 235-242.

二级参考文献15

  • 1霍贵成,杨丽杰.豆科植物中的抗营养因子(续)[J].饲料博览,1996,8(6):13-15. 被引量:5
  • 2[1]Ernst Graf and Katherine L Empson and Jone W Eaton. Phytic acid-A natural antioxidant[J]. The Joural of Biological Chemistry,1987,262(24):11 647~11 650.
  • 3[2]Ernst Graf. Applications of Phytic Acid[J]. JAOCS, 1983,60(11):1 861~1867.
  • 4[3]Bruce H M and Callow R K. Cereals and Rickets, the Role of Inositol-Hexaphosphoric Acid[J]. Biochem J,1934,28:517~528.
  • 5[4]Roberts H and Yudkin J. Dietary Phytate as a Possible Cause of Magnesium Deficiency[J]. Nature, 1960,185:823~825.
  • 6[5]Linkuski H J A and Forbes R M. Mineral Utilization in Rat Ⅳ. Effects of Calcium and Phytic Acid on the Utilization of Dietary Zinc[J]. J Nurt, 1965, 85:230~234.
  • 7[6]Bunn C R and Matrone G. In vivo Interaction of Cadmium, Copper, Zinc and Iron in the Mouse and Rat[J]. J. Nutr,1966, 90:395~399.
  • 8[8]Ernst Graf and Frederick R Dintzis. Determination of Phytic Acid in Foods by High-Performance Liquid Chromatography[J]. J Agric. Food Chem,1982,30:1094~1097.
  • 9[9]Thompson D B and JW Erdman JR. Phytic Acid Determination in Soybeans[J]. J Food Sci,1982,47(2):513~517.
  • 10[10]Latta M and M Eskin. A Simple and Rapid Colorimetric Method for Phytate Determination[J]. J Sci Food Chem, 1980,28:1313~1315.

共引文献114

同被引文献465

引证文献34

二级引证文献300

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部