期刊文献+

应用PCA和BP神经网络的医学彩色图像语义标注 被引量:1

Semantic Annotation of Medical Color Image Based on PCA and BP Neural Network
在线阅读 下载PDF
导出
摘要 目的:针对目前计算机辅助诊断的需要以及较难实现语义检索和较少涉及医学彩色图像分类的问题,设计医学内窥镜图像语义标注分类器。方法:基于C#/C++编程语言、Windows 7、.NET、Visual-Studio(VS2008)平台,通过CBIR特征提取,主成分分析(principal component analysis,PCA)降维处理,然后通过BP神经网络训练进行分类,开发应用分类器。结果:分类器对7类医学彩色内窥镜图像分类准确性达到80%,而训练时间只有几秒或几十毫秒。结论:主成分分析和BP神经网络的结合使用,克服了低级特征和高级语义间的语义鸿沟,降维处理大大减小了系统存储量,提高了训练速度,获得了更好的标注结果。 Objective To design endoscope image semantic annotation classifier aimed at the needs of computer-aided diagnosis,as well as the problems that it was more difficult to achieve semantic retrieval and less involved in medical color image classification.Methods The classifier was developped based on C#/C++ programming language,Windows 7,.NET and Visual-Studio(VS2008) platform,through the CBIR feature extraction,principal component analysis(PCA) to reduce the dimensions,and then BP neural network training classification.Results The classification accuracy of seven types of medical endoscopic color image was above 80%,while the training time was only a few seconds or tens of milliseconds.Conclusion The combination of principal component analysis and BP neural network overcomes the considerable gap between the low-level features and advanced semantic.The dimensions reducing significantly reduces the system memory,improves the training speed and achieves a better annotation results.
出处 《医疗卫生装备》 CAS 2011年第4期3-5,22,共4页 Chinese Medical Equipment Journal
基金 广东省科技计划项目(2007B010400057 2007B060401009)
关键词 语义标注 内窥镜图像 分类器 BP神经网络 主成分分析 semantic annotation endoscopic image classifier BP neural network principal component analysis(PCA)
作者简介 作者简介:王耿嫒(1986-),女,陕西咸阳人,硕士,主要研究方向为智能医学仪器设计与开发,E-mail:zbwgy@qq.com; 彭达明(1966-),男,广东紫金人,主任,高级工程师,主要从事医疗设备研发及维护管理工作。 通讯作者:彭达明.E-mail:sdzjgd@fimmu.com
  • 相关文献

参考文献11

  • 1张密,吴效明,郭圣文.医学影像工作站的发展现状和趋势[J].世界科技研究与发展,2008,30(4):493-496. 被引量:11
  • 2MULL ER H,ROSSFT A,VALL EE J P,et al.Comparing feature set s for content-based medical information retrieval[C] //Proc SPIE Med Imaging,San Diego,CA,2004,5 351:992 109.
  • 3LEHMANN T,WEIN B,DAHMEN J,et al.Content-based image retrieval in medical applications:A novel multi-step approach[J].Proe SPIE,2000,3 972:3 122 320.
  • 4MALONE D E.Evidence-based practice in radiology:what color is your parachute[J].Abdominal Imaging,2008,33:3-5.
  • 5Fasquel J B,Agnus V.Imp roving genericity and performances of medical systems based on image analysis[J].Computer-Based Medical Systems,2005,5 (23/24):247-252.
  • 6He J,Li M,Zhang H J,et al.Mean version space:A new activelearning method for content-based image retrieval[C] //Proc Multimedia Information Retrieval Workshop,New York:NY,2004:15-22.
  • 7YANG J,ZHANG D,FRANGIA F,et al.Two-D im ensiona 1 PCA:A N ew Approach to A ppea rance-B ased Face Represen ta tion and Reeogn ition[J].IEEE Transactions on Pa ttern A na lysis and M ach ine In telligence,2004,26(1):131-137.
  • 8Zhang Daoqiang,Zhou Zhi-hua,Chen Songcan.Diagonal principal componentanalysis for face recognition[J].Pattern Recognition,2006,39 (1):140-142.
  • 9Li J,Wang J Z.Automatic linguistic indexing of pictures by astatistical modeling approach[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2003,25(9):1 075-1 088.
  • 10Cybenko G.Approximation by superlxitions of a sigmoid function[J].Math Control,Signals and system,1989,2(4):303-314.

二级参考文献40

共引文献20

同被引文献5

  • 1于树滨.医用输液泵注射泵质量控制检测技术[M].北京:中国计量出版社,2010.
  • 2(美)DeloresME,DavidCK,HollyM.MATLAB7及工程科问题的解决方案[M].北京:机械工业出版社,2006.
  • 3Moler C. Numerical Computing with MATLAB Electronic edition[M]. United States:The MathWorks Inc. Natick MA, 2004.
  • 4(美)StephenJC.MATLABProgrammingforEngineers[M].2版.北京:科学出版社.2003.
  • 5张建国.区域电子健康记录(档案)系统构建方法及问题[J].中国数字医学,2010,5(12):22-25. 被引量:2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部