期刊文献+

基于Iceberg概念格的最大频繁项集挖掘 被引量:4

Maximal Frequent Itemsets Mining Based on Iceberg Concept Lattice
在线阅读 下载PDF
导出
摘要 最大频繁项集挖掘算法存在扫描数据集次数多和候选集规模过大等局限。基于Iceberg概念格模型,提出一种在Iceberg概念格上挖掘最大频繁项集的算法ICMFIA。该算法通过一次扫描数据集构建Iceberg概念格,利用Iceberg概念格中频繁概念之间良好的覆盖关系能快速计算出最大频繁项集所对应的最大频繁概念,所有最大频繁概念的内涵就是所求的最大频繁项集的集合。实验结果表明,该算法具有扫描数据集次数少和挖掘效率高的优点。 Some existing algorithms for mining Maximal Frequent Itemset(MFI) limit in scanning data sets frequently and tremendous candidate set size,etc.Based on Iceberg concept lattice model,this paper presents a maximal frequent itemsets mining algorithm——Iceberg Concept Lattice Maxmal Frequent Itemset Algorithm(ICMFIA) in the Iceberg concept lattice.The algorithm builds the Iceberg concept lattice through scanning the data sets at a time,by using the coverage relationship between frequent concepts in the Iceberg concept lattice,it can quickly calculate the maximum frequent concepts corresponding to the maximum frequent itemsets.The intension of all maximal frequent concepts is the set of all maximal frequent itemsets.Experimental results show that ICMFIA algorithm outperforms other existing algorithms in the number of scan data sets and mining efficiency.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第7期35-37,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60773049) 江苏大学高级人才启动基金资助项目(09JDG041)
关键词 Iceberg概念格 频繁概念 最大频繁概念 最大频繁项集 Iceberg concept lattice frequent concept maximal frequent concept Maximal Frequent Itemset(MFI)
作者简介 薛安荣(1964-),男,副教授、博士,主研方向:数据挖掘,时空数据库; 王富强,硕士研究生E-mail:wfq_2012@sina.com
  • 相关文献

参考文献5

  • 1宋余庆,朱玉全,孙志挥,陈耿.基于FP-Tree的最大频繁项目集挖掘及更新算法[J].软件学报,2003,14(9):1586-1592. 被引量:164
  • 2Burdick D,Calimlim M,Flannick J,et al.MAFIA:A Maximal Frequent Itemset Algorithm[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(11):1490-1504.
  • 3Selvan R.Memory Efficient Mining of Maximal Itemsets Using Order Preserving Generators[J].International Journal of Recent Trends in Engineering,2009,9(6):372-276.
  • 4Martin B.Eklund P Form Concepm to Concept Lattice:A Border Algorithm for Making Covers EcplicitlMl.Berlin,Germany:Springer-Verlag,2008:78-89.
  • 5余远,钱旭,钟锋,李晓瑞.基于最大概念的概念格增量构造算法[J].计算机工程,2009,35(21):62-64. 被引量:8

二级参考文献4

共引文献169

同被引文献31

  • 1马志新,陈晓云,王雪,李龙杰.最大频繁项集挖掘中搜索空间的剪枝策略[J].清华大学学报(自然科学版),2005,45(S1):1748-1752. 被引量:5
  • 2王德兴,胡学钢,刘晓平,王浩.基于概念格和Apriori的关联规则挖掘算法分析[J].合肥工业大学学报(自然科学版),2006,29(6):699-702. 被引量:8
  • 3眭俊明,姜远,周志华.基于频繁项集挖掘的贝叶斯分类算法[J].计算机研究与发展,2007,44(8):1293-1300. 被引量:12
  • 4王甦菁,陈震.一种基于概念格的关联规则挖掘算法[J].计算机工程与应用,2007,43(28):157-161. 被引量:2
  • 5YANG Kai, MA Yuan. A fast algorithm for discovering maximum frequent itemsets[C]//Proc of the 21 th Int'l Conf on Communication Software and Networks. Xi'an, China, 2011: 434-438.
  • 6HUANG Guoyang, WANG Libo, HU Changzhen, et al. An efficient algorithm based on time decay model for mining maximal frequent itemsets[C]//Proc of the 20th Int'l Conf on Machine Learning and Cybernetics. Perth, Australia, 2009: 2063 -2066.
  • 7LIU Zhenyu, XU Weixiang, LIU Xumin. Efficiently using matrix in mining maximum frequent itemset[C]//Proc of the 20th Int'l Conf on Knowledge Discovery and Data Mining. Washington DC, USA, 2010: 50-54.
  • 8R.Wille. Restructuring lattice theory: an approach based on hierarchies of concepts [J]. Formal Concept Analysis, 2009, 5548: 314-339.
  • 9L Lakhal, G Stumme. Efficient Mining of Association Rules Based on Formal Concept Analysis [J]. Formal Concept Analysis, 2005,3626:180-195.
  • 10G Stumme,R Taouil,Y Bastide, et al. Computing iceberg concept lattices with TITANIC [J]. Data&Knowledge Engineering, 2002,42:189-222.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部