期刊文献+

薄壁细胞受微吸管与探针共同作用接触模型及数值模拟 被引量:1

The contact model and numerical simulation of parenchyma cell aspirated by micropipette and squashed by mechanical probe
在线阅读 下载PDF
导出
摘要 建立了以典型的薄壁球型植物细胞为原型的细胞、微吸管及探针接触模型。模型的细胞壁采用封闭球形薄膜,其本构关系为体积不可压超弹性,膜球内充满有压流体以模拟细胞质。应用轴对称几何非线性方法得出了基本微分方程组,并应用龙格-库塔法进行了求解;同时,应用流固耦合有限元法进行了数值模拟以资比较。两种方法得出了较为一致的变形和应力分布。分析、总结了吸管口径和探针直径对压入深度、细胞内压和接触区变化等数值解的影响。 A numerical model was formed from a typical parenchyma spherical plant cell to show the contact behavior of a cell suckled by a micropipette and squashed by a probe.The cell was built as a spherical membrane filled with static liquid.The incompressible hyper-elastic constitutive was used for cell wall,the incompressible hydrostatic fluid was used to simulate inner cytoplasm.The contact model was used to simulate the interaction of membrane touching with micropipette and microprobe.Considering nonlinear geometric and physic relations,the differential control equations were deduced.The numerical solutions were obtained through Runge-Kutta method.As a comparative solution,the cell was also modeled and simulated by fluid-solid coupled finite element method.The solutions of the two methods were fairly agreed with each other.Finally,looking into the solutions of deformation,inside pressure,stresses on the wall and contact forces,the effect of inner diameter of pipette and diameter of probe to these results were discussed.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2011年第2期290-295,共6页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(10972234)资助项目
关键词 细胞力学模型 微吸管 微探针 计算生物力学 cell mechanical model micropipette microprobe computational biomechanics
作者简介 付志一(1957-),男,博士,教授(E—mail:fzy@cau.edu.cn) 焦群英(1948-),男,博士,教授.
  • 相关文献

参考文献13

  • 1Jenny Blewett, Kathleen Burrows, Colin Thomas. A micromanipulation method to measure the mechanical properties of single tomato suspension cells[J]. Biotechnology Letters ,2000,22(23) : 1877-1883.
  • 2Wang C, Cowen C, Zhang Z, et al. High-speed compression of single alginate microspheres[J]. Chemical Engineering Science, 2005,60(23) : 6649-6657.
  • 3Robert M H. Review Mieropipette aspiration of living cells[J]. Journal of Biomechanics, 2000,33 ( 1 ) : 15-22.
  • 4Lim C T, Zhou E H, Quek S T. Mechanical models for living eells-a review[J]. Journal of Biomechanics, 2006,39 (2) :195-216.
  • 5Sato M, Theret D, Wheeler L, et al. Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties[J]. Journal of Biomechanical Engineering, 1990,112:263-268.
  • 6Theret D P, Levesque M J, Sato M, et al. The application of a homogeneous half-space model in the a- nalysis of endothelial cell micropipette measurements [J]. Journal of Biomechanical Engineering, 1988, 110:190-199.
  • 7He J H, Xu W, Zhu L. Analytical model for extracting mechanical properties of a single cell in a tapered micropipette[J]. Applied Physics Letters, 2007,90 (2) :023901-3.
  • 8Thomas Boudou, Jacques Ohayon, Youri Arntz, Gerard Finet, Catherine Picart, Philippe Traequi. An extended modeling of the micropipette aspiration experiment for the characterization of the Young's modulus and Poisson's ratio of adherent thin biological samples: Numerical and experimental studies[J]. Journal of Biomechanics ,2006,39(9) : 1677-1685.
  • 9Zhou E H, Lim C T. Finite element simulation of the mieropipette aspiration of a living eell undergoing large viscoelastic deformation[J]. Mechanics of Advanced Materials and Structures, 2005,12 (6) : 501- 512.
  • 10Wang C, Wang W, Thomas C. Modelling the mechanical properties of single suspension-cultured to-mato cells[J]. Annals of Botany, 2004,93 (4) : 443-453.

二级参考文献6

  • 1Pitt R E. Models for rheology and statistical strength of uniformly stressed vegetative tissue [J ]. Trans ASAE,1982, 25(6): 1776-1784.
  • 2Scanlon M G, Pang C H, Biliaderis C G. The effect of osmotic adjustment on the mechanical properties of potato parenchyma [J]. Food Research International, 1996, 29(5-6) : 481-488.
  • 3Feng W W, Yong W H. On the contact problem of an inflated spherical nonlinear membrane [ J ]. Journal of Applied Mechanics, 1973, March: 209-214.
  • 4Wu Naiqiang, Pitts M J. Development and validation of a finite element model of an apple fruit cell [ J ]. Postharvest Biology and Technology, 1999, 16 : 1-8.
  • 5Pitt R E, Davis D C. Finite-element analysis of liquid-filled cell response to external loading [J]. Trans ASAE.1984, 27:1976-1983.
  • 6Zhu H X, Melrose J R. A mechanics model for the compression of plant and vegetative tissues [ J ]. Journal of Theor Biol, 2003, 211 : 89-101.

共引文献1

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部